Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>ABBKÜRZUNGSVERZEICHNIS</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTE DER MODULE</td>
<td>5</td>
</tr>
<tr>
<td>IDEALTYPISCHER STUDIENVERLAUF</td>
<td>6</td>
</tr>
<tr>
<td>ERSTES SEMESTER</td>
<td>7</td>
</tr>
<tr>
<td>MNS1030 – Mathematik 1</td>
<td>7</td>
</tr>
<tr>
<td>MNS1080 – Physik</td>
<td>9</td>
</tr>
<tr>
<td>EEN1070 – Elektrotechnik</td>
<td>12</td>
</tr>
<tr>
<td>CEN1190 – Informatik</td>
<td>15</td>
</tr>
<tr>
<td>MEC1030 – Maschinenbau 1</td>
<td>19</td>
</tr>
<tr>
<td>ZWEITES SEMESTER</td>
<td>22</td>
</tr>
<tr>
<td>MNS1070 – Mathematik 2</td>
<td>22</td>
</tr>
<tr>
<td>EEN1180 – Messtechnik</td>
<td>25</td>
</tr>
<tr>
<td>CEN1130 – Technische Informatik</td>
<td>28</td>
</tr>
<tr>
<td>MEC1040 – Maschinenbau 2</td>
<td>33</td>
</tr>
<tr>
<td>MEC1050 – Grundlagen der Mechatronik</td>
<td>36</td>
</tr>
<tr>
<td>ISS1030 – Ingenieurmethoden 1</td>
<td>40</td>
</tr>
<tr>
<td>DRITTES SEMESTER</td>
<td>43</td>
</tr>
<tr>
<td>MEC2140 – Automatisierungstechnik 1</td>
<td>43</td>
</tr>
<tr>
<td>EEN2020 – Rechnernetze</td>
<td>47</td>
</tr>
<tr>
<td>CEN2150 – Embedded Systems</td>
<td>50</td>
</tr>
<tr>
<td>MEC2130 – Maschinenbau 3</td>
<td>52</td>
</tr>
<tr>
<td>MEC2150 – Sensorik und Aktorik</td>
<td>54</td>
</tr>
<tr>
<td>EEN2200 – Projektarbeit 1</td>
<td>57</td>
</tr>
<tr>
<td>VIERTES SEMESTER</td>
<td>58</td>
</tr>
<tr>
<td>EEN2040 – Elektronik</td>
<td>58</td>
</tr>
<tr>
<td>MEC2160 – Automatisierungstechnik 2</td>
<td>61</td>
</tr>
<tr>
<td>CEN2240 – Software Engineering</td>
<td>64</td>
</tr>
<tr>
<td>MEC2070 – Modelbildung und Simulation</td>
<td>67</td>
</tr>
<tr>
<td>MEC2180 – KFZ-Mechatronik</td>
<td>69</td>
</tr>
<tr>
<td>MEC2300 – Projektarbeit 2</td>
<td>72</td>
</tr>
<tr>
<td>FÜNFTES SEMESTER</td>
<td>73</td>
</tr>
<tr>
<td>MEC3080 – Praxissemester</td>
<td>73</td>
</tr>
<tr>
<td>SECHSTES SEMESTER</td>
<td>75</td>
</tr>
<tr>
<td>MEC3030 – Maschinenbau 4</td>
<td>75</td>
</tr>
<tr>
<td>ISS3040 – Fachübergreifende Qualifikation 1</td>
<td>78</td>
</tr>
<tr>
<td>MEC3400 – Vertiefungsmodul</td>
<td>82</td>
</tr>
<tr>
<td>Automatisierungstechnik-Robotik</td>
<td>83</td>
</tr>
<tr>
<td>Chemische Sensoren</td>
<td>85</td>
</tr>
<tr>
<td>C++ Programmierung mit der Standard Template Library (STL)</td>
<td>87</td>
</tr>
<tr>
<td>Datenschutz und Datensicherheit</td>
<td>89</td>
</tr>
<tr>
<td>Diagnosesysteme</td>
<td>92</td>
</tr>
<tr>
<td>Elektrische Antriebstechnik</td>
<td>94</td>
</tr>
<tr>
<td>Elektro-CAE</td>
<td>96</td>
</tr>
<tr>
<td>Elektromobilität</td>
<td>98</td>
</tr>
</tbody>
</table>
ABBKÜRZUNGSVERZEICHNIS

CR Credit gemäß ECTS - System
PLK Prüfungsleistung Klausur
PLL Prüfungsleistung Laborarbeit
PLM Prüfungsleistung mündliche Prüfung
PLP Prüfungsleistung Projektarbeit
PLR Prüfungsleistung Referat
PLS Prüfungsleistung Studienarbeit
PLT Prüfungsleistung Thesis
PVL Prüfungsvorleistung
PVL-BP Prüfungsvorleistung für die Bachelorprüfung
SWS Semesterwochenstunde(n)
UPL Unbenotete Prüfungsleistung
<table>
<thead>
<tr>
<th>Modul</th>
<th>Modulverantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Semester</td>
<td></td>
</tr>
<tr>
<td>Mathematik 1</td>
<td>Herr Schmidt</td>
</tr>
<tr>
<td>Physik</td>
<td>Prof. Blankenbach</td>
</tr>
<tr>
<td>Elektrotechnik 1</td>
<td>Herr Schmidt</td>
</tr>
<tr>
<td>Informatik 1</td>
<td>Prof. Johannsen</td>
</tr>
<tr>
<td>Maschinenbau 1</td>
<td>Prof. Simon</td>
</tr>
<tr>
<td>2. Semester</td>
<td></td>
</tr>
<tr>
<td>Mathematik 2</td>
<td>Prof. Niemann</td>
</tr>
<tr>
<td>Messtechnik</td>
<td>Prof. Hetznecker</td>
</tr>
<tr>
<td>Technische Informatik</td>
<td>Prof. Johannsen</td>
</tr>
<tr>
<td>Maschinenbau 2</td>
<td>Prof. Simon</td>
</tr>
<tr>
<td>Grundlagen der Mechatronik</td>
<td>Prof. Barth</td>
</tr>
<tr>
<td>Ingenieurmethoden 1</td>
<td>Prof. Pfeiffer</td>
</tr>
<tr>
<td>3. Semester</td>
<td></td>
</tr>
<tr>
<td>Automatisierungstechnik 1</td>
<td>Prof. Hillenbrand</td>
</tr>
<tr>
<td>Rechnernetze</td>
<td>Prof. Niemann</td>
</tr>
<tr>
<td>Embedded Systems</td>
<td>Prof. Kesel</td>
</tr>
<tr>
<td>Maschinenbau 3</td>
<td>Prof. Simon</td>
</tr>
<tr>
<td>Sensorik und Aktorik</td>
<td>Prof. Hetznecker</td>
</tr>
<tr>
<td>Projektarbeit 1</td>
<td>Prof. Barth</td>
</tr>
<tr>
<td>4. Semester</td>
<td></td>
</tr>
<tr>
<td>Elektronik</td>
<td>Prof. Rech</td>
</tr>
<tr>
<td>Automatisierungstechnik 2</td>
<td>Prof. Hillenbrand</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>Prof. Johannsen</td>
</tr>
<tr>
<td>Modellbildung und Simulation</td>
<td>Prof. Simon</td>
</tr>
<tr>
<td>KFZ-Mechatronik</td>
<td>Prof. Zirn</td>
</tr>
<tr>
<td>Projektarbeit 2</td>
<td>Prof. Barth</td>
</tr>
<tr>
<td>5. Semester</td>
<td></td>
</tr>
<tr>
<td>Praxissemester</td>
<td>Prof. Simon</td>
</tr>
<tr>
<td>6. Semester</td>
<td></td>
</tr>
<tr>
<td>Maschinenbau 4</td>
<td>Prof. Simon</td>
</tr>
<tr>
<td>Fachübergreifende Qualifikation 1</td>
<td>Prof. Greiner</td>
</tr>
<tr>
<td>Vertiefungsmodul</td>
<td>Prof. Barth</td>
</tr>
<tr>
<td>7. Semester</td>
<td></td>
</tr>
<tr>
<td>Fachübergreifende Qualifikation 2</td>
<td>Prof. Greiner</td>
</tr>
<tr>
<td>Ingenieurmethoden 2</td>
<td>Prof. Röscher</td>
</tr>
<tr>
<td>Projektarbeit 3</td>
<td>Prof. Barth</td>
</tr>
<tr>
<td>Abschlussarbeit</td>
<td>Prof. Barth</td>
</tr>
</tbody>
</table>
IDEALTYPISCHER STUDIENVERLAUF

| 7 | Abschlussarbeit
(12 Credits) | Ingenieurmethoden 2
(2 SWS, 8 Credits) | Fachübergr. Quali. 2
(4 SWS, 4 Credits) | Projektarbeit 3
(Interdisziplinäres) Projek
(4 SWS, 5 Credits) |
|---|---|---|---|---|
| 6 | Maschinenbau 4
(4 SWS, 6 Credits) | Vertiefungsmodul
6 Fächer
(12 SWS, 18 Credits) | Fachübergreifende Qualifikation 1
(6 SWS, 7 Credits) |
| 5 | Praxissemester
(4 SWS, 30 Credits) |
| 4 | Software Engineering
(4 SWS, 5 Credits) | Modellbildung und Simulation
(4 SWS, 5 Credits) | Elektronik
(4 SWS, 5 Credits) | KFZ-Mechatronik
(4 SWS, 5 Credits) | Automatisierungs-technik 2
(3 SWS, 4 Credits) | Projektarbeit 2
freies Fachprojekt
(4 SWS, 5 Credits) |
| 3 | Embedded Systems
(4 SWS, 5 Credits) | Maschinenbau 3
(4 SWS, 5 Credits) | Sensorik und Akkorik
(4 SWS, 5 Credits) | Rechnernetze
(4 SWS, 5 Credits) | Automatisierungs-technik 1
(5 SWS, 5 Credits) | Projektarbeit 1
geführtes Projekt
(4 SWS, 5 Credits) |
| 2 | Technische Informatik
(5 SWS, 6 Credits) | Maschinenbau 2
(4 SWS, 5 Credits) | Messtechnik
(4 SWS, 5 Credits) | Grundlagen der Mechatronik
(4 SWS, 5 Credits) | Mathematik 2
(5 SWS, 5 Credits) | Ingenieurmethoden 1
(4 SWS, 4 Credits) |
| 1 | Informatik
(4 SWS, 6 Credits) | Maschinenbau 1
(5 SWS, 6 Credits) | Elektrotechnik
(4 SWS, 5 Credits) | Physik
(5 SWS, 6 Credits) | Mathematik 1
(7 SWS, 8 Credits) |
ERSTES SEMESTER

<table>
<thead>
<tr>
<th>MNS1030 – Mathematik 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennziffer</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
</tr>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
</tbody>
</table>
| **SWS** | Vorlesungen: 5 SWS
Übung: 2 SWS |
| **Studiensemester** | 1. Semester |
| **Häufigkeit** | im Wintersemester |
| **Dauer des Moduls** | 1 Semester |
| **Prüfungsart/Prüfungsdauer** | PLK, 120 Minuten
UPL |
| **Lehrsprache** | deutsch |
| **Teilnahmevoraussetzungen** | Formale Voraussetzungen: keine
Inhaltliche Voraussetzungen: mathematische Kenntnisse der
Hochschulzugangsberechtigung |
| **zugehörige Lehrveranstaltungen** | MNS1031 Analysis 1
MNS1032 Lineare Algebra
MNS1033 Übungen Mathematik 1 |
| **Dozenten/Dozentinnen** | Prof. Dr.-Ing. Stefan Hillenbrand (Analysis 1)
Prof. Dr.-Ing. Stefan Hillenbrand (Lineare Algebra)
Prof. Dr.-Ing. Stefan Hillenbrand (Übungen Mathematik 1) |
| **Lehrformen der Lehrveranstaltungen des Moduls** | Vorlesungen
Übung |
| **Ziele** | Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden erlernen die Grundlagen der Mathematik, die in den technischen und naturwissenschaftlichen Disziplinen einheitlich benötigt werden, also die Lineare Algebra und die Differential- und Integralrechnung für eine und mehrere Variablen.
Sie können die entsprechenden Verfahren sicher anwenden und sind damit in der Lage, den mathematischen Anforderungen ihres weiteren Studiums zu entsprechen. |
| **Inhalte** | Vorlesung Analysis 1:
• Grenzwerte
• Differential- und Integralrechnung |
MNS1030 – Mathematik 1

<table>
<thead>
<tr>
<th>Folgen</th>
<th>Reihen</th>
</tr>
</thead>
<tbody>
<tr>
<td>komplexe Zahlen</td>
<td>Taylorreihen</td>
</tr>
<tr>
<td>Funktionen von mehreren Variablen</td>
<td></td>
</tr>
</tbody>
</table>

Vorlesung Lineare Algebra:
- Vektor- und Matrizen-Rechnung
- Determinanten
- Eigenwerte und Eigenvektoren

Verwendbarkeit des Moduls in anderen Studiengängen

Das Modul ist verwendbar im Studiengang:
- Bachelor Elektrotechnik/Informationstechnik
- Bachelor Medizintechnik
- Bachelor Technische Informatik

Workload

Workload: 240 Stunden (8 Credits x 30 Stunden)

Präsenzstudium: 105 Stunden (7 SWS x 15 Wochen)

Eigenstudium: 135 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)

Voraussetzung für die Vergabe von Credits

Bestandene Modulklausur sowie erfolgreiche Absolvierung der Übung.

Stellenwert Modulnote für Endnote

Gewichtung 8\(^1\)

Geplante Gruppengröße

cia. 70 Studierende

Literatur

- Skripte und Anleitungen des Moduls

Letzte Änderung

01.03.2013

\(^1\) Die Durchschnittsnote des 1. Studienabschnitts geht mit der Gewichtung 5 in die Endnote ein.
<table>
<thead>
<tr>
<th>MNS1080 – Physik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennziffer</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
</tr>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ziele</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MNS1080 – Physik</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>schreibung physikalischer Vorgänge benötigt wird.</td>
</tr>
<tr>
<td>Inhalte</td>
</tr>
<tr>
<td>• Messungen (Wie wird gemessen? Maßeinheiten, Auswertung von Messungen)</td>
</tr>
<tr>
<td>• Kinematik (Ableiten und Integrieren von Vektoren, Gleichförmige und ungleichförmige Bewegung, Zusammensetzen von Geschwindigkeiten und Beschleunigungen, Wurf, Kreisbewegung, Schwingungen)</td>
</tr>
<tr>
<td>• Dynamik (Impuls, Kraft und Energie inkl. Erhaltungssätze für translative und rotatorische Bewegungen)</td>
</tr>
<tr>
<td>• Schwingungen</td>
</tr>
<tr>
<td>• Wärmelehre (Wärmemenge, Wärmestrom, Wärmeleitung, Dimensionierung von Kühlkörpern)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls in anderen Studiengängen</td>
</tr>
<tr>
<td>Das Modul ist verwendbar im Studiengang:</td>
</tr>
<tr>
<td>• Bachelor Elektrotechnik/Informationstechnik</td>
</tr>
<tr>
<td>• Bachelor Medizintechnik</td>
</tr>
<tr>
<td>• Bachelor Technische Informatik</td>
</tr>
<tr>
<td>Workload</td>
</tr>
<tr>
<td>Workload: 180 Stunden (6 Credits x 30 Stunden)</td>
</tr>
<tr>
<td>Präsenzstudium: 75 Stunden (5 SWS x 15 Wochen)</td>
</tr>
<tr>
<td>Eigenstudium: 105 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
</tr>
<tr>
<td>Bestandene Modulklausur sowie erfolgreiche Absolvierung der Übung.</td>
</tr>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
</tr>
<tr>
<td>Gewichtung 6(^\text{2})</td>
</tr>
<tr>
<td>Geplante Gruppengröße</td>
</tr>
<tr>
<td>ca. 70 Studierende</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>• Halliday, David; Resnick, Robert; Walker, Jearl: Physik (deutsch), Wiley VCH Weinheim</td>
</tr>
<tr>
<td>• Hering, Ekbert; Martin, Rolf; Stöhrer, Martin: Physik für Ingenieure. Springer Verlag Berlin Heidelberg</td>
</tr>
<tr>
<td>Zur Auffrischung von Schulkenntnissen:</td>
</tr>
<tr>
<td>Für ausländische Studierende:</td>
</tr>
<tr>
<td>• Giancoli, Douglas C.: Physics: Principles with Applica-</td>
</tr>
</tbody>
</table>

\(^2\) Die Durchschnittsnote des 1. Studienabschnitts geht mit der Gewichtung 5 in die Endnote ein.
MNS1080 – Physik

<table>
<thead>
<tr>
<th>Formelsammlungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kuchling, Horst: Taschenbuch der Physik. Fachbuchverlag Leipzig im Hanser Verlag München</td>
</tr>
<tr>
<td>• Stöcker, Horst (Hrsg.): Taschenbuch der Physik: Formeln, Tabellen, Übersichten. Verlag Harri Deutsch Frankfurt/M.</td>
</tr>
<tr>
<td>• Hering, Ekbert; Martin, Rolf; Stöhrer, Martin: Taschenbuch der Mathematik und Physik. Springer Verlag Berlin Heidelberg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aufgabensammlung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lindner, Helmut: Physikalische Aufgaben. Fachbuchverlag Leipzig im Hanser Verlag München</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Letzte Änderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.03.2013</td>
</tr>
</tbody>
</table>
EEN1070 – Elektrotechnik

Kennziffer	EEN1070
Modulverantwortlicher	Dipl.-Phys. Frank Schmidt
Level	Eingangsniveau
Credits	5 Credits
SWS	Vorlesung: 3 SWS
Übung: 1 SWS	
Studiensemester	1. Semester
Häufigkeit	im Wintersemester
Dauer des Moduls	1 Semester
Prüfungsart/Prüfungsdauer	PLK/PLM, 90 Minuten
UPL	
Lehrsprache	deutsch
Teilnahmevoraussetzungen	Formale Voraussetzungen: keine
Inhaltliche Voraussetzungen: Mathematische Kenntnisse der Hochschulzugangsberechtigung	
zugehörige Lehrveranstaltungen	EEN1071 Grundlagen Elektrotechnik
EEN1072 Übung Grundlagen der Elektrotechnik	
Dozenten/Dozentinnen	Prof. Dr.-Ing. habil. Oliver Zirn (Grundlagen Elektrotechnik)
Prof. Dr.-Ing. habil. Oliver Zirn (Übung Grundlagen der Elektrotechnik)	
Lehrformen der Lehrveranstaltungen des Moduls	Vorlesung
Übung	
Ziele
Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Lernziele:
EEN1070 – Elektrotechnik

die Beziehungen und Korrespondenzen zwischen unterschiedlichen technischen Fachgebieten und können diese einschätzen. Sie besitzen die Fertigkeit zum logischen, analytischen und konzeptionellen Denken und können geeignete Methoden erkennen und anwenden. Sie können eigenes Wissen selbstständig erweitern.

Inhalte

Verwendbarkeit des Moduls in anderen Studiengängen

Das Modul ist verwendbar in weiteren Studiengängen:
• Bachelor Medizintechnik

Workload

Workload: 150 Stunden (5 Credits x 30 Stunden)
Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)
Eigenstudium: 90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)

Voraussetzung für die Vergabe von Credits

Bestandene Modulklausur sowie erfolgreiche Absolvierung der Übungsklausur

Stellenwert Modulnote für Endnote

Gewichtung 5

Geplante Gruppengröße

Vorlesungen: ca. 70 Studierende
Übung: ca. 70 Studierende

Literatur

Lehrbücher:
• Clausert, Horst; Wiesemann, Gunther: Grundgebiete der Elektrotechnik, Band 1. Oldenbourg Verlag München. 8. Aufl. 2003

3 Die Durchschnittsnote des 1. Studienabschnitts geht mit der Gewichtung 5 in die Endnote ein.
<table>
<thead>
<tr>
<th>EEN1070 – Elektrotechnik</th>
<th>Aufgabensammlungen:</th>
</tr>
</thead>
</table>

Letzte Änderung 14.01.2014
<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>CEN1190</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. rer. nat. Peer Johannsen</td>
</tr>
<tr>
<td>Level</td>
<td>Eingangslevel</td>
</tr>
<tr>
<td>Credits</td>
<td>6 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesungen: 3 SWS Labor: 1 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Wintersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>deutsch</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK, 60 Minuten UPL</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: keine Inhaltliche Voraussetzungen: keine</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>CEN1191 Einführung in die Informatik CEN1192 Softwareentwicklung CEN1193 Labor Softwareentwicklung</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr. rer. nat. Peer Johannsen (Einführung in die Informatik) Prof. Dr. rer. nat. Peer Johannsen (Softwareentwicklung) Prof. Dr. rer. nat. Peer Johannsen, Dipl.-Ing. (FH) Peter Bitterlich, Dr.-Ing. Christoph Ußfeller (Labor Softwareentwicklung)</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesungen Labor</td>
</tr>
</tbody>
</table>
CEN1190 – Informatik

- kennen und verstehen grundlegende Begriffe der Informatik (z.B. Information, Daten, Algorithmus, etc.),
- kennen und verstehen die Grundbausteine von Algorithmen und wenden diese bei der strukturierten Beschreibung einfacher Aufgaben zur Lösung an,
- lernen verschiedene Lösungen für die gleiche Aufgabenstellung nach einfachen Kriterien (Prägnanz, Verständlichkeit, Wartbarkeit) zu bewerten,
- lernen in der Kleingruppe mit Hilfe eines verbreiteten Werkzeugs (Visual C++ 2010: Compiler, Linker, Debugger in einer integrierten Entwicklungsumgebung) eigene Lösungen zu gestalten, typischen Übungsaufgaben steigenden Schwierigkeitsgrades zu kreieren und zu testen,
- lernen ihre eigenen Lösungen darzustellen und zu analysieren und bewerten diese in Bezug auf deren Richtigkeit und Vollständigkeit.

Inhalte

Vorlesung Einführung in die Informatik:
- Grundbegriffe
 - Information, Daten, Datenverarbeitung, Informatik
 - Sprachen
 - Ziffernsysteme, Zahlen- und Zeichendarstellung
- Teilgebiete der Informatik und ihre Themen
- Grundlagen des Aufbaus und der Funktionsweise von Computersystemen
- Software-Typen
 - Systemsoftware
 - Anwendungssoftware
- Grundlagen der Programmierung
 - Variablen und Datentypen
 - Algorithmen
 - Anweisungen, Sequenzen
 - Fallunterscheidungen, Schleifen
 - Prozeduren, Funktionen
- Strukturierte Programmierung
 - Methode der strukturierten Programmierung
 - Darstellung von Algorithmen durch Programmablaufpläne und Nassi-Shneiderman-Diagramme

Vorlesung Softwareentwicklung:
- Begriffe der Softwareentwicklung
- Eigenschaften von Software
- Klassifikation von Programmiersprachen
- Compiler und Entwicklungsumgebung
- Die Programmiersprache C
 - Aufbau von C-Programmen
 - Reservierte Worte, Bezeichner
CEN1190 – Informatik

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Datentypen, Kontrollstrukturen</td>
<td>- Felder und Zeiger,</td>
</tr>
<tr>
<td>- Strukturen und Verbünde</td>
<td>- Operatoren und Ausdrücke</td>
</tr>
<tr>
<td>- Speicherklassen</td>
<td>- Funktionen und Parameterübergabe</td>
</tr>
<tr>
<td>- Der C-Präprozessor</td>
<td>- Die ANSI-Lauffzeitbibliothek</td>
</tr>
</tbody>
</table>

Labor Softwareentwicklung:
- Die integrierte Entwicklungsumgebung Microsoft Visual C++ 2010
- Übungsaufgaben zu den Themen der Lehrveranstaltung „Softwareentwicklung“, z.B.
 - Analyse und Entwurf
 - Eingabe von der Tastatur – Ausgabe auf dem Bildschirm
 - Formatierte Ein- und Ausgabe
 - Fallunterscheidungen und Schleifen
 - Mathematische Berechnungen
 - Funktionen, Zeiger
 - Datenstrukturen

Verwendbarkeit des Moduls in anderen Studiengängen

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls in anderen Studiengängen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul ist verwendbar in weiteren Studiengängen:</td>
</tr>
<tr>
<td>• Bachelor Elektrotechnik/Informationstechnik</td>
</tr>
<tr>
<td>• Bachelor Medizintechnik</td>
</tr>
<tr>
<td>• Bachelor Technische Informatik</td>
</tr>
</tbody>
</table>

Workload

- **Workload:** 180 Stunden (6 Credits x 30 Stunden)
- **Präsenzstudium:** 60 Stunden (4 SWS x 15 Wochen)
- **Eigenstudium:** 120 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)

Voraussetzung für die Vergabe von Credits

<table>
<thead>
<tr>
<th>Voraussetzung für die Vergabe von Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandene Modulklausur sowie erfolgreiche Absolvierung des Labors.</td>
</tr>
</tbody>
</table>

Stellenwert Modulnote für Endnote

<table>
<thead>
<tr>
<th>Stellenwert Modulnote für Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung 5⁴</td>
</tr>
</tbody>
</table>

Geplante Gruppengröße

<table>
<thead>
<tr>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesungen: ca. 70 Studierende</td>
</tr>
<tr>
<td>Labor: ca. 20 Studierende</td>
</tr>
</tbody>
</table>

Literatur

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Einführung in die Informatik:</td>
</tr>
<tr>
<td>• H. Herold, B. Lurz, J. Wohlrab, „Grundlagen der Informatik“, Pearson</td>
</tr>
<tr>
<td>• A. Böttcher, F. Kneißl, „Informatik für Ingenieure“,</td>
</tr>
</tbody>
</table>

⁴ Die Durchschnittsnote des 1. Studienabschnitts geht mit der Gewichtung 5 in die Endnote ein.
<table>
<thead>
<tr>
<th>CEN1190 – Informatik</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oldenbourg Verlag</td>
<td></td>
</tr>
<tr>
<td>• P. Levi, U. Rembold, „Einführung in die Informatik für Naturwissenschaftler und Ingenieure“, Hanser Verlag</td>
<td></td>
</tr>
<tr>
<td>• H. Müller, F. Weichert, „Vorkurs Informatik – Der Einstieg ins Informatikstudium“, Springer Verlag</td>
<td></td>
</tr>
<tr>
<td>• G. Büchel, „Praktische Informatik – Eine Einführung“, Springer Verlag</td>
<td></td>
</tr>
<tr>
<td>• Skripte des Moduls</td>
<td></td>
</tr>
<tr>
<td>Vorlesung Softwareentwicklung:</td>
<td></td>
</tr>
<tr>
<td>• P. Baumle-Courth, T. Schmidt, „Praktische Einführung in C“, Oldenbourg Verlag</td>
<td></td>
</tr>
<tr>
<td>• N. Heiderich, W. Meyer, „Technische Probleme lösen mit C / C++“, Hanser Verlag</td>
<td></td>
</tr>
<tr>
<td>• H. Erlenkotter, „C: Programmieren von Anfang an“, rororo Verlag</td>
<td></td>
</tr>
<tr>
<td>• R. Klima, S. Selberherr, „Programmieren in C“, Springer Verlag</td>
<td></td>
</tr>
<tr>
<td>• M. Dausmann, U. Bröckl, D. Schoop, J. Groll, „C als erste Programmiersprache – Vom Einsteiger zum Fortgeschrittenen“, Springer Verlag</td>
<td></td>
</tr>
<tr>
<td>• Regionales Rechenzentrum für Niedersachsen (RRZN), „C Programmierung – Eine Einführung“ und „Die Programmiersprache C – Ein Nachschlagewerk“</td>
<td></td>
</tr>
<tr>
<td>• Skripte und Laboranleitungen des Moduls</td>
<td></td>
</tr>
</tbody>
</table>

Letzte Änderung 01.03.2013
MEC1030 – Maschinenbau 1

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>MEC1030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Marcus Simon</td>
</tr>
<tr>
<td>Level</td>
<td>Eingangslevel</td>
</tr>
<tr>
<td>Credits</td>
<td>6 Credits</td>
</tr>
</tbody>
</table>
| SWS | Vorlesungen: 3 SWS
 Übungen: 2 SWS |
| Studiensemester | 1. Semester |
| Häufigkeit | im Wintersemester |
| Dauer des Moduls | 1 Semester |
| Prüfungsart/Prüfungsdauer | PLK/PLM, 90 Minuten
 UPL |
| Lehrsprache | deutsch |
| Teilnahmevoraussetzungen | Formale Voraussetzungen: keine
 Inhaltliche Voraussetzungen: keine |
| zugehörige Lehrveranstaltungen | MEC1031 Konstruktionslehre
 MEC1032 Statik
 MEC1033 Übungen Konstruktionslehre
 MEC1034 Übungen Statik |
| Dozenten/Dozentinnen | Prof. Dr.-Ing. Mike Barth (Konstruktionslehre)
 Prof. Dr.-Ing. Mike Barth (Übungen Konstruktionslehre)
 Prof. Dr.-Ing. Marcus Simon (Statik)
 Prof. Dr.-Ing. Marcus Simon (Übungen Statik) |
| Lehrformen der Lehrveranstaltungen des Moduls | Vorlesungen
 Übungen |

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Die Studierenden erwerben die Grundlagen des Maschinenbaus in den Bereichen Konstruktion und Statik. Sie können technische Produkte konstruieren und auf Basis von technischen Zeichnungen dokumentieren. Dabei erlernen die Studierenden methodische Vorgehensweisen in Bezug auf das fertigungs- und montagegerechte Konstruieren unter Berücksichtigung gängiger Normen und Standards; stets mit Bezug auf die bereichsübergreifenden Einflüsse der Mechatronik.

Lernziele:

Konstruktionslehre: Die Studierenden
- sind in der Lage, Ideen für mechatronische Produkte sachgerecht und technisch verständlich in Form von
MEC1030 – Maschinenbau 1

<table>
<thead>
<tr>
<th>Zeichnungen zu dokumentieren</th>
<th>Konstruktionslehre:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• haben grundlegende Kenntnisse in der Bemaßung, Pass und -Toleranzberechnung von technischen Produkten</td>
<td>• Technisches Zeichnen:</td>
</tr>
<tr>
<td>• haben grundlegende Kenntnisse in der Auslegung konstruktionstechnischer Grundelemente des Maschinenbaus.</td>
<td>- Erstellen technischer Zeichnungen</td>
</tr>
<tr>
<td>• können konstruktive Grundelemente in einem aktuellen 3D-Computer Aided Drawing (CAD) System erstellen, bemaßen und in technische Zeichnungen überführen.</td>
<td>- Bemaßung technischer Zeichnungen</td>
</tr>
<tr>
<td>• sind in der Lage, grundlegende diskursive Methoden zur Ideen- und Lösungsfindung (z.B. morphologischer Kasten) anzuwenden.</td>
<td>- Ansichten in technischen Zeichnungen</td>
</tr>
</tbody>
</table>

Statik: Die Studierenden

• bekommen ein Verständnis für den Kraftbegriff	• Ideen- und Lösungssuche:
• können für Tragwerke entscheiden, ob diese statisch bestimmt oder statisch unbestimmt sind	- Anwendung diskursiver Methoden
• sind in der Lage für einfache Tragwerke Auflagereaktions durch Gleichgewichtsbetrachtungen zu ermitteln	- Morphologischer Kasten
• können mehrteilige Systeme analysieren	- Lasten- und Pflichtenheft
• können als Vorstufe für die Festigkeitslehre innere Schnittreaktionen bestimmen	- Funktionsstruktur

Inhalte

<table>
<thead>
<tr>
<th>Konstruktionslehre:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Technisches Zeichnen:</td>
</tr>
<tr>
<td>- Erstellen technischer Zeichnungen</td>
</tr>
<tr>
<td>- Bemaßung technischer Zeichnungen</td>
</tr>
<tr>
<td>- Ansichten in technischen Zeichnungen</td>
</tr>
<tr>
<td>- Schnittbilder</td>
</tr>
<tr>
<td>- Explosionsdarstellungen</td>
</tr>
<tr>
<td>• Passungen, Bohrungen, Toleranzen:</td>
</tr>
<tr>
<td>- Auswahl und Konstruktion geeigneter Passungen, Bohrungen</td>
</tr>
<tr>
<td>- Toleranzberechnung und -Bemaßung</td>
</tr>
<tr>
<td>• Ideen- und Lösungssuche:</td>
</tr>
<tr>
<td>- Anwendung diskursiver Methoden</td>
</tr>
<tr>
<td>- Morphologischer Kasten</td>
</tr>
<tr>
<td>- Lasten- und Pflichtenheft</td>
</tr>
<tr>
<td>- Funktionsstruktur</td>
</tr>
<tr>
<td>• 3D-CAD:</td>
</tr>
<tr>
<td>- Anwendung der Grundlagen zur Arbeit in modernen CAD-Werkzeugen (am Beispiel CREO)</td>
</tr>
<tr>
<td>• Konstruktion und Auslegung von Grundelementen des Maschinenbaus</td>
</tr>
<tr>
<td>- Wellenberechnung</td>
</tr>
<tr>
<td>- Lagerberechnung</td>
</tr>
</tbody>
</table>
MEC1030 – Maschinenbau 1

| Statik | Grundbegriffe in der Statik, insbesondere Einführung des Kraftbegriffes
| | Zentrale Kräftesysteme, Äquivalenzbegriff, Gleichgewicht, Lagrnagesches Schnittprinzip
| | Allgemeine Kräftesysteme, Kräftepaare und Moment, Äquivalenz und Gleichgewicht
| | Tragwerke, statische Bestimmtheit, Auflagerreaktionen, ein- und mehrteilige Systeme
| | Innere Schnittreaktionen |

Workload

| Workload | **Workload**: 150 Stunden (5 Credits x 30 Stunden)
| | **Präsenzstudium**: 75 Stunden (5 SWS x 15 Wochen)
| | **Eigenstudium**: 75 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |

Voraussetzung für die Vergabe von Credits

| Bestandene Modulklausur sowie erfolgreiche Absolvierung der Übungen. |

Stellenwert Modulnote für Endnote

| Gewichtung 6⁵ |

Geplante Gruppengröße

| Vorlesungen: ca. 70 Studierende
| Übungen: ca. 3*25 Studierende, bzw. 70 Studierende (Statik) |

Literatur

| **Hibbeler Russel, C.**: Technische Mechanik, Band 1 Statik, Pearson-Verlag |

Letzte Änderung

| 10.05.2013 |

⁵ Die Durchschnittsnote des 1. Studienabschnitts geht mit der Gewichtung 5 in die Endnote ein.
ZWEITES SEMESTER

<table>
<thead>
<tr>
<th>MNS1070 – Mathematik 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennziffer</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
</tr>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden lernen unterschiedliche Verfahren und Methoden zu Lösung verschiedener mathematischer Probleme und lernen diese anzuwenden.

Lernziele:
Die Studierenden
- verstehen, wie naturwissenschaftliche Vorgänge mit Hilfe mathematischer Methoden beschrieben werden können,
- kennen wesentliche Lösungsstrategien zur Lösung von Differentialgleichungen n-ter Ordnung,
- beherrschen den Umgang mit Integraltransformationen.
MNS1070 – Mathematik 2

<table>
<thead>
<tr>
<th>Inhalte</th>
<th>Analysis 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>und die Darstellung von Funktionen im Zeit- und Frequenzbereich,</td>
<td>• Der erste Teil der Vorlesung beinhaltet die Definition, Klassifizierung und Lösungsmethodik von gewöhnlichen Differentialgleichungen. Die Vorlesung beschränkt sich im Wesentlichen auf die wichtigsten DGL-Typen erster und zweiter Ordnung wie sie in der Elektrotechnik und dem Maschinenbau auftreten, wenngleich auch Lösungsstrategien für Differentialgleichungen höherer Ordnung behandelt werden.</td>
</tr>
<tr>
<td>erwerben die Fähigkeit, die zeitkontinuierliche Fourier-Transformation und die Laplace-Transformation anzuwenden,</td>
<td>Numerik</td>
</tr>
<tr>
<td>verstehen die Verfahren der numerischen Mathematik und können diese einsetzen.</td>
<td>• Einführung in MATLAB</td>
</tr>
<tr>
<td>Analysis 2</td>
<td>• Computerarithmetik und Fehleranalyse</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls in anderen Studiengängen</td>
<td>• Lösung von linearen und nichtlinearen Gleichungssystemen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls in anderen Studiengängen</td>
<td>• Approximation</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls in anderen Studiengängen</td>
<td>• Numerische Integration</td>
</tr>
<tr>
<td>Workload</td>
<td>Das Modul ist verwendbar im Studiengang:</td>
</tr>
<tr>
<td>Workload</td>
<td>• Bachelor Elektrotechnik/Informationstechnik</td>
</tr>
<tr>
<td>Workload</td>
<td>• Bachelor Medizintechnik</td>
</tr>
<tr>
<td>Workload</td>
<td>• Bachelor Technische Informatik</td>
</tr>
<tr>
<td>Workload</td>
<td>Workload: 150 Stunden (5 Credits x 30 Stunden)</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzstudium: 75 Stunden (5 SWS x 15 Wochen)</td>
</tr>
<tr>
<td>Workload</td>
<td>Eigenstudium: 75 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
<td>Bestandene Klausuren sowie erfolgreiche Absolvierung der Übung.</td>
</tr>
</tbody>
</table>
MNS1070 – Mathematik 2

<table>
<thead>
<tr>
<th>Stellenwert Modulnote für Endnote</th>
<th>Gewichtung 5<sup>6</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geplante Gruppengröße</td>
<td>ca. 70 Studierende</td>
</tr>
</tbody>
</table>

Literatur

- Skripte des Moduls

Letzte Änderung 01.03.2013

⁶ Die Durchschnittsnote des 1. Studienabschnitts geht mit der Gewichtung 5 in die Endnote ein.
<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>EEN1180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Alexander Hetznecker</td>
</tr>
<tr>
<td>Level</td>
<td>Eingangslevel</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesung: 3 SWS Labor: 1 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM, 60 Minuten UPL</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>MEC2011 Messtechnik MEC2012 Labor Messtechnik</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung Labor</td>
</tr>
</tbody>
</table>
| Ziele | Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
| | Lernziele: Messtechnik: Die Studierenden
• kennen den Hintergrund und die Notwendigkeit eines internationalen Einheitensystems,
• kennen die Vor- und Nachteile von Ausschlag- und Kom pensationsverfahren,
• sind sensibilisiert für Nennwerte und Messabweichungen sowie deren verschiedene Ansätze zur Berechnung,
• erlernen den Aufbau und die Funktion analoger und digitaler Messgeräte für langsam und schnellveränderliche |
Inhalte

Vorlesung Messtechnik:
- SI-Einheitensystem und Basiseinheiten.
- Darstellung von Messwerten und Kurven.
- Ausschlag- und Kompensationsmethode.
- Hintergrund statischen und dynamischen Verhaltens von Messgeräten.
- Definition Mittelwert, Vertrauensbereich, systematische und zufällige Abweichung.
- Berechnung der Fortpflanzung systematischer und zufälliger Abweichungen.
- Einblick in elektromechanische Messgeräte.
- Funktionsweise von Analog-Digital-Wandlern in der Messtechnik (Flash-Wandler, Dual-Slope-Wandler).
- Messung von Strömen und Spannungen.
- Messbereichserweiterung.
- Indirekte Messung von Widerständen.
- Dioden zur Messbereichsbegrenzung.
- Mittelwert, Gleichrichtwert, quadratischer Mittelwert, Effektivwert, Spitzenwert.

Labor Messtechnik:
- Kennenlernen einer in der Messtechnik häufig verwendeten grafischen Programmiersprache.
- Auslesen der Messdaten von Temperatursensoren unterschiedlicher Art.
- Erzeugung, Abruf und Weiterverarbeitung von Messdaten.
- Transfer und Auswertung der Messwerte in einer Tabellenkalkulation.

Verwendbarkeit des Moduls in anderen Studiengängen

Das Modul ist verwendbar in weiteren Studiengängen:
- Bachelor Medizintechnik

Workload

Workload: 150 Stunden (5 Credits x 30 Stunden)
- Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)
- Eigenstudium: 90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)

Voraussetzung für die Vergabe von Credits

Bestandene Klausur sowie erfolgreiche Absolvierung des Labors.
<table>
<thead>
<tr>
<th>EEN1180 – Messtechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
</tr>
</tbody>
</table>
| **Geplante Gruppengröße** | Vorlesung: ca. 70 Studierende
Labor: ca. 20 Studierende |
| **Literatur** | **Lehrbücher:** |
| | • Lerch, Reinhard: Elektrische Messtechnik: Analoge, digitale und computergestützte Verfahren. Springer Verlag Berlin Heidelberg 2010 |
| | **Aufgabensammlung:** |
| | • Lerch, Reinhard; Kaltenbacher, Manfred; Lindinger, Franz: Übungen zur elektrischen Messtechnik. Springer Verlag Berlin Heidelberg 1996 |
| **Letzte Änderung** | 01.03.2013 |

⁷ Die Durchschnittsnote des 1. Studienabschnitts geht mit der Gewichtung 5 in die Endnote ein.
CEN1130 – Technische Informatik

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>CEN11330</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. rer. nat. Peer Johannsen</td>
</tr>
<tr>
<td>Level</td>
<td>Eingangslevel</td>
</tr>
<tr>
<td>Credits</td>
<td>6 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesung: 4 SWS Labor: 1 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/Prüfungsduauer</td>
<td>PLK/PLM, 2 x 60 Minuten UPL</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: keine Inhaltliche Voraussetzungen für Softwareentwicklung 2: Kenntnisse der Programmiersprache C Inhaltliche Voraussetzungen für Digitaltechnik: keine</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>CEN1024 Softwareentwicklung 2 CEN1025 Digitaltechnik CEN1026 Labor Softwareentwicklung 2</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr. rer. nat. Peer Johannsen (Softwareentwicklung 2) Prof. Dr. rer. nat. Peer Johannsen (Digitaltechnik) Prof. Dr. rer. nat. Peer Johannsen, Dipl.-Ing.(FH) Andreas Reber, Dr.-Ing. Christoph Ußfeller (Labor Softwareentwicklung 2)</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesungen Labor</td>
</tr>
</tbody>
</table>
Lernziele:

Die Studierenden
- haben vertiefte Kenntnisse im Entwurf von Algorithmen zur Lösung komplexer Aufgabestellungen
- sind geübt im Umgang mit den Grundbausteinen von Algorithmen und wenden diese zum strukturierten Entwurf komplexer algorithmischer Problemlösungen an
- kennen gängige Standard-Datenstrukturen und Standard-Algorithmen,
- lernen verschiedene Lösungen für die gleiche Aufgabenstellung nach einfachen Kriterien (Prägnanz, Verständlichkeit, Wartbarkeit, Komplexität, Effizienz) zu bewerten,
- lernen in der Kleingruppe mit Hilfe eines verbreiteten Werkzeugs (Visual C++ 2010: Compiler, Linker, Debugger in einer integrierten Entwicklungsumgebung) eigene Lösungen zu gestellten, typischen Übungsaufgaben steigenden Schwierigkeitsgrades zu kreieren und zu testen,
- lernen ihre eigenen Lösungen darzustellen und zu analysieren und bewerten diese in Bezug auf deren Richtigkeit, Vollständigkeit, Komplexität und Effizienz,
- verstehen die Informationsdarstellung mit digitalen Signalen,
- lernen die Zahlendarstellung im Dualsystem und die Grundbegriffe der Kodierung,
- verstehen die Bool'sche Algebra als mathematische Grundlage,
- beherrschen den Entwurf von optimierten Schaltnetzen und Schaltwerken und
- können für gegebene Aufgabenstellungen digitale Schaltungen entwerfen.

Inhalte

Vorlesung Softwareentwicklung 2:
- Anwendungen und Konzepte
 - Grundlagen der Programmierung von Mikrocontrollern und eingebetteten Systemen
 - Grundprinzipien von Kontrollalgorithmen für reaktive Systeme (Sensoren, Aktoren)
 - Grundprinzipien des Multitasking (kritische Bereiche, Semaphore)
- Vertiefung C-Programmierung
 - Modularisierung, Umgang mit Header-Dateien und mehreren C-Files
 - Verwendung von mehrdimensionalen Arrays, Strukturen und Unions
 - Zeiger und Verwendung von Zeigern
<table>
<thead>
<tr>
<th>CEN1130 – Technische Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Statische und dynamische Speicherallokation</td>
</tr>
<tr>
<td>- Rekursive Funktionen</td>
</tr>
<tr>
<td>- Einsatz von Debugging-Methoden</td>
</tr>
<tr>
<td>• Algorithmen und Datenstrukturen</td>
</tr>
<tr>
<td>- Bitmaskierungen</td>
</tr>
<tr>
<td>- Datenausgabe (Umrechnung DEC – OKT – HEX)</td>
</tr>
<tr>
<td>- Verwendung von Timern</td>
</tr>
<tr>
<td>- Finite State Machines (FSM) / Endliche Automaten als Kontrollstrukturen</td>
</tr>
<tr>
<td>- Stacks, Queues und Listen (abstrakte Datentypen)</td>
</tr>
<tr>
<td>- Sortierverfahren und Suchverfahren (Listen, Bäume, Divide and Conquer)</td>
</tr>
<tr>
<td>- Komplexität von Algorithmen (O-Notation)</td>
</tr>
</tbody>
</table>

Vorlesung Digitaltechnik:
- Aufbau von Computern und digitalen Schaltungen
- Informationsdarstellung, digitale und analoge Signale
- Zahlensysteme, Rechnen mit Dualzahlen
- Kodierung und Eigenschaften von Codes
- Digitale Grundverknüpfungen und logische Gatter
- Schaltalgebra und Bool’sche Algebra
- Vollständige und unvollständige Schaltfunktionen
- Disjunktive und konjunktive Normalform
- Rechenschaltungen und Multiplexer-Schaltnetze
- Formale Beschreibung von Schaltwerken
- Speicherglieder

Labor Softwareentwicklung 2:
- Die integrierte Entwicklungsumgebung Microsoft Visual C++ 2010
- Arbeiten mit den Debugger
- Übungsaufgaben zu den Themen der Lehrveranstaltung „Softwareentwicklung 2“, z.B.
 - Rekursive Funktionen
 - Dynamische Speicherverwaltung und dynamische Datenstrukturen
 - Vertiefter Umgang mit Zeigern
 - Umgang mit Timern
 - Bitmanipulationen

Verwendbarkeit des Moduls in anderen Studiengängen
- Das Modul ist verwendbar in weiteren Studiengängen:
 - Bachelor Medizintechnik

Workload
- **Workload:** 180 Stunden (6 Credits x 30 Stunden)
- **Präsenzstudium:** 75 Stunden (5 SWS x 15 Wochen)
- **Eigenstudium:** 105 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur
<table>
<thead>
<tr>
<th>CEN1130 – Technische Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
</tr>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
</tr>
</tbody>
</table>
| **Geplante Gruppengröße** | Vorlesung: ca. 70 Studierende
Labor: ca. 20 Studierende |
| **Literatur** | Vorlesung Softwareentwicklung 2:
- H. Herold, B. Lurz, J. Wohlrab, „Grundlagen der Informatik“, Pearson
- A. Böttcher, F. Kneißl, „Informatik für Ingenieure“, Oldenbourg Verlag
- N. Blum, „Algorithmen und Datenstrukturen“, Oldenbourg Verlag
- M. von Rimscha, „Algorithmen kompakt und verständlich“, Springer Verlag
- M. Nebel, „Entwurf und Analyse von Algorithmen“, Springer Verlag
- H. Müller, F. Weichert, „Vorkurs Informatik – Der Einstieg ins Informatikstudium“, Springer Verlag
- G. Büchel, „Praktische Informatik – Eine Einführung“, Springer Verlag
- P. Baeumle-Courth, T. Schmidt, „Praktische Einführung in C“, Oldenbourg Verlag
- N. Heiderich, W. Meyer, „Technische Probleme lösen mit C / C++“, Hanser Verlag
- H. Erlenkotter, „C: Programmieren von Anfang an“, rororo Verlag
- R. Klima, S. Selberherr, „Programmieren in C“, Springer Verlag
- M. Dausmann, U. Bröckl, D. Schoop, J. Groll, „C als erste Programmiersprache – Vom Einsteiger zum Fortgeschrittenen“, Springer Verlag
- Regionales Rechenzentrum für Niedersachsen (RRZN), „C Programmierung – Eine Einführung“ und „Die Programmiersprache C – Ein Nachschlagewerk
- Skripte und Laboranleitungen des Moduls |

⁸ Die Durchschnittsnoten des 1. Studienabschnitts gehen mit der Gewichtung 5 in die Endnote ein.
<table>
<thead>
<tr>
<th>CEN1130 – Technische Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Digitaltechnik:</td>
</tr>
<tr>
<td>• Woitowitz, Urbanski, Gehrke, „Digitaltechnik“, Springer, 2012</td>
</tr>
<tr>
<td>• D. W. Hoffmann, „Grundlagen der Technischen Informatik“, Hanser Verlag, 2010</td>
</tr>
<tr>
<td>• B. Becker, P. Molitor, „Technische Informatik“, Oldenbourg Verlag, 2008</td>
</tr>
<tr>
<td>• P. Pernards, „Digitaltechnik 1: Grundlagen, Entwurf, Schaltungen“, Hüthig Verlag, 2001</td>
</tr>
<tr>
<td>• P. Pernards, „Digitaltechnik 2: Einführung in die Schaltwerke“, Hüthig Verlag, 1995</td>
</tr>
<tr>
<td>• H.-M. Lipp, J. Becker, „Grundlagen der Digitaltechnik“, Oldenbourg Verlag, 2007</td>
</tr>
</tbody>
</table>

Letzte Änderung | 19.04.2013
MEC1040 – Maschinenbau 2

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>MEC1040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Marcus Simon</td>
</tr>
<tr>
<td>Level</td>
<td>Eingangsniveau</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesungen: 4 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM, 60 Minuten</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: keine</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>Inhaltsliche Voraussetzungen: Kenntnisse aus der Lehrveranstaltung Statik</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Mike Barth (Maschinenelemente)</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Marcus Simon (Mechanik 2/Festigkeitslehre)</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesungen</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Die Studierenden lernen die gängigen Maschinenelemente kennen und teilweise auszulegen und zu berechnen. Sie sind in der Lage selbstständig Werkstücke gegen Bruch bzw. maximale Verformung unter Beachtung wirtschaftlicher Zusammenhänge auszulegen.

Lernziele:

Maschinenelemente:

- Die Studierenden
 - lernen verschiedene kraftschlüssige, formschlüssige und stoffschlüssige Welle-Nabe-Verbindungen kennen,
 - können gängige formschlüssige Welle-Nabe-Verbindungen rechnerisch auslegen,
 - kennen verschiedene Dichtungen und ihre Wirkprinzipien und können sie anwendungsspezifisch auswählen,
 - kennen die Eigenschaften verschiedener mechanischer Federn und können sie auslegen und berechnen,
 - kennen verschiedene mechanische und hydraulische
Getriebearten und
- können Zahnradgetriebe auslegen, berechnen und konstruieren.

Mechanik 2 / Festigkeitslehre:
Die Studierenden
- können den Spannungszustand eines Körpers beschreiben,
- können Spannungen in verschiedenen Schnittebenen aus einem vorgegebenen Spannungszustand bestimmen,
- können die Verformungen und die daraus abgeleiteten Verzerrungen eines Körpers beschreiben,
- können den Zusammenhang zwischen Spannungen und Verzerrungen angeben und
- können für einfache Belastungen (Zug/Druck, Biegung, Torsion) Modellkörper auslegen.

<table>
<thead>
<tr>
<th>Inhalte</th>
<th>Maschinenelemente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formschlüssige, kraftschlüssige und stoffschlüssige Welle-Nabe-Verbindungen (WNV). Schwerpunkt auf den gängigen formschlüssigen WNV Paßfederverbindung, Zahn- / Keilwellenverbindung und Polygonalverbindung</td>
<td></td>
</tr>
<tr>
<td>Statische und dynamische Dichtungen. Schwerpunkte Radialer Wellendichtring und berührungslose Strömungsrichtungen</td>
<td></td>
</tr>
<tr>
<td>Mechanische Federn (Blattfeder, Drehfeder, Drehstabfeder, Schraubenfeder, Tellerfeder, usw.). Federkennzahlen, Gestaltungsformen (Belastungsart, Form, Werkstoff), Berechnung / Auslegung</td>
<td></td>
</tr>
<tr>
<td>Mechanische und hydraulische Getriebe. Schwerpunkt Zahnradgetriebe, Berechnung und Auslegung</td>
<td></td>
</tr>
</tbody>
</table>

Mechanik 2 / Festigkeitslehre
- Grundbegriffe, Belastung – Beanspruchung
- Spannung, Spannungstensor, Tensortransformationen
- Verzerrungen, Verzerrungstensor
- Hookesches Gesetz, Zusammenhang zw. Verzerrungen und Spannungen
- Zug/ Druck
- Biegung
- Torsion
- Zusammengesetzte Beanspruchungen / Vergleichsspannungen

<table>
<thead>
<tr>
<th>Workload</th>
<th>Workload: 150 Stunden (5 Credits x 30 Stunden)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur</td>
</tr>
<tr>
<td>MEC1040 – Maschinenbau 2</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Vorbereitung und Durchführung der Prüfung</td>
<td></td>
</tr>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
<td>Bestandene Modulklausur.</td>
</tr>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
<td>Gewichtung 5<sup>9</sup></td>
</tr>
<tr>
<td>Geplante Gruppengröße</td>
<td>ca. 70 Studierende</td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
<tr>
<td>• Roloff, Matek: Maschinenelemente: Normung, Berechnung, Gestaltung, 18. Auflage 2007, Vieweg-Verlag</td>
<td></td>
</tr>
<tr>
<td>• Fischer, Heinzler, u.a.: Tabellenbuch Metall, 44. Auflage 2008, Europa Lehrmittel Verlag</td>
<td></td>
</tr>
<tr>
<td>• Gross, Hauger, Schnell, Schröder: Technische Mechanik, Band 2 Elastostatik, 8. Auflage 2005, Springer-Verlag</td>
<td></td>
</tr>
<tr>
<td>• Hibbeler, Russel C.: Technische Mechanik 1: Statik, Pearson-Verlag</td>
<td></td>
</tr>
<tr>
<td>Letzte Änderung</td>
<td>05.06.2013</td>
</tr>
</tbody>
</table>

⁹ Die Durchschnittsnote des 1. Studienabschnitts geht mit der Gewichtung 5 in die Endnote ein.
<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>MEC1050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Mike Barth</td>
</tr>
<tr>
<td>Level</td>
<td>Eingangslevel</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesungen: 4 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM, 2 x 60 Minuten UPL</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Teilnahmeveraussetzungen</td>
<td>Formale Voraussetzungen für Werkstoffkunde: keine Inhaltliche Voraussetzungen für „Einführung in die Mechatronik“: Kenntnisse aus dem Modul Eletrotechnik</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>MEN1123 Werkstoffkunde MEN1051 Einführung in die Mechatronik</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Mike Barth (Werkstoffkunde) Prof. Dr.-Ing. habil. Oliver Zirn (Einführung in die Mechatronik)</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesungen</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Die Studierenden erlangen Kenntnisse über die Werkzeuge zur Analyse mechatronischer Systeme. Sie können die Beschreibung im Zeitbereich in den Bildbereich transformieren und dort geeignete Lösungen für das Spektrum bei periodischer Anregung und das transiente Systemverhalten herleiten.
MEC1050 – Grundlagen der Mechatronik

Lernziele:

Die Studierenden
- haben grundlegende Kenntnisse über die unterschiedlichen Werkstoffgruppen, deren Charakteristika und Einsatzgebiete,
- haben grundlegende Kenntnisse über den atomaren Aufbau von Kristallgitter in deren räumliche Struktur,
- sind geübt im Umgang mit Aussagen über die zu den Auswirkung der unterschiedlichen Gittertypen sowie deren Umwandlungsvergängen,
- haben grundlegende Kenntnis über mögliche Arten von Legierungen in Bezug auf deren Löschlichkeit im festen Zustand,
- haben vertiefte Kenntnisse über den Werkstoff „Stahl“ sowie die Anwendung des damit verbundenen Eisen-Kohlenstoff-Diagramms,
- haben vertiefte Kenntnisse in der Auswahl geeigneter Wärmebehandlungsverfahren für Stähle,
- haben vertiefte Kenntnisse in Werkstoffprüverfahren und der damit verbundenen Ermittlung von Werkstoffeigenschaften,
- können mechatronische Systeme analytisch im Zeitbereich sowie im Bildbereich (Laplace- und Fouriertransformation) beschreiben,
- kennen die Grundlagen der Systemidentifikation mittels Messung, FFT und Frequenzgang (Bode-Plot),
- kennen die typischen Modelldarstellungen (physikalisches, mathematisches Modell, Blockschaltbild),
- können schwingfähige Systeme (1 DOF) hinsichtlich Sprungantwort, Eigenfrequenz und Dämpfung analysieren und
- besitzen Grundkenntnisse in der elektrischen Antriebstechnik (Motor- und Lastkennlinie, Bewegungswandler).

Inhalte

<table>
<thead>
<tr>
<th>Werkstoffkunde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen zu Werkstoffen</td>
</tr>
<tr>
<td>- Arten von Werkstoffgruppen (Polymere, Eisen und nicht Eisenmetalle, Nicht-Metalle, Verbundwerkstoffe)</td>
</tr>
<tr>
<td>- Werkstoffeigenschaften und deren Bedeutung für die Entwicklung technischer Produkte</td>
</tr>
<tr>
<td>- Versagensarten von Werkstoffen</td>
</tr>
<tr>
<td>- Rohstoffherkunft von Werkstoffen</td>
</tr>
<tr>
<td>- Monetäre Werkstoffbedeutung für die Industrie</td>
</tr>
<tr>
<td>Metalle und Legierungen</td>
</tr>
<tr>
<td>- Gitteraufbau von Metallen und Legierungen</td>
</tr>
</tbody>
</table>
MEC1050 – Grundlagen der Mechatronik

- Elementarzellen-Charakteristika (Gitterkonstanten)
- Aufbau von Legierungen (vollkommene Löslichkeit, unvollkommene Löslichkeit, teilweise Löslichkeit)
- Das Eisen-Kohlenstoff-Diagramm (Bildung von Austenit, Perlit, Zementit)

- Wärmebehandlungsverfahren
 - Glühverfahren am Beispiel „Normalglühen"
 - Härteverfahren (Durchhärten, Randschichthärten)
 - Martensit-Kristall und Martensit-Bildung
 - Anlass- und Vergütungsverfahren

- Werkstoffprüfung / Bestimmung von Werkstoffparametern
 - Zugversuch (mit Spannungs-Dehnungs-Diagramm)
 - Kerbschlag-Biegeversuch

- Polymere
 - Grundlegender Aufbau und Anwendung (Thermoplaste, Duroplaste, Elastomere)

Einführung in die Mechatronik

- Periodische nichtsinusförmige Signale
 - Anwendung der Fouriertransformation
 - FFT und Spektrum
 - Übertragungsfunktionen und Filter

- Transiente Vorgänge
 - Anwendung Laplace-Transformation
 - Elektrische Netzwerke
 - Antriebe (Tauchspulmotor)
 - schwingfähige Systeme mit 1 DOF
 - Dämpfung und log. Dekrement
 - thermische Modelle

- Systeme mit Rückkopplung
 - einfache P-Regler
 - Stabilitätsanalyse, Wurzelorte

- Antriebe mit Gleichstrommotoren
 - Motorkennlinie
 - Lastkennlinie und Arbeitspunkt
 - Verluste und Wirkungsgrad

- Ausblick zu ingenieurwissenschaftlichen Softwarewerkzeugen
 - MATLAB/Simulink
 - FEM mit Ansys
 - PSPICE

Workload

Workload: 150 Stunden (5 Credits x 30 Stunden)
Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)
Eigenstudium: 90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur...
MEC1050 – Grundlagen der Mechatronik

<table>
<thead>
<tr>
<th>Voraussetzung für die Vergabe von Credits</th>
<th>Bestandene Klausuren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
<td>Gewichtung 5<sup>10</sup></td>
</tr>
<tr>
<td>Geplante Gruppengröße</td>
<td>ca. 70 Studierende</td>
</tr>
</tbody>
</table>

Literatur

- Reissner: Werkstoffkunde für Bachelors, Carl Hanser Verlag, 2010
- Riehle, Simmchen: Grundlagen der Werkstofftechnik, Wiley VHC, 2000, 2. Auflage
- Führer, Heidemann, Nerrer: Grundgebiete der Elektrotechnik Bd.2, Hanser-Verlag, München, 1997

Letzte Änderung

10.05.2013

¹⁰ Die Durchschnittsnote des 1. Studienabschnitts geht mit der Gewichtung 5 in die Endnote ein.
ISS1030 – Ingenieurmethoden 1

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>ISS1030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Martin Pfeiffer</td>
</tr>
<tr>
<td>Level</td>
<td>Eingangsniveau</td>
</tr>
<tr>
<td>Credits</td>
<td>4 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>4 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsmethoden, Prüfungsduer</td>
<td>UPL</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch/englisch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: keine, Inhaltliche Voraussetzungen: keine</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>ISS1031 Lern- und Arbeitstechniken, LAN2031 Technisches Englisch</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr. rer. nat. Esther Rösch (Lern- und Arbeitstechniken), Lehrbeauftragte Natalie Vielsack (Technisches Englisch)</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vortrag, Dialog, Übung, Vorlesung, Übung</td>
</tr>
</tbody>
</table>

Ziele

<table>
<thead>
<tr>
<th>Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:</th>
</tr>
</thead>
</table>

Lernziele:

- Lern- und Arbeitstechniken: Die Studierenden
 - kennen die Grundbegriffe der Projektplanung (Ziele, Meilensteine, Aufgabenpakete) und können diese mit ihrem Studium in Verbindung setzen,
 - sind in der Lage, einfache Werkzeuge zur persönlichen Aufgabenplanung einzusetzen,
 - erstellen und verfolgen persönliche Pläne für das laufende Semester ihres Studiums,
 - kennen die grundlegenden Techniken im Umgang mit Fachliteratur und können diese anwenden,
 - können ihr persönliches Lernverhalten einordnen.
- kennen verschiedene Lerntechniken und wenden diese in ihrem Studium an,
- kennen die Bedeutung von Lerngruppen und sind in der
<table>
<thead>
<tr>
<th>ISS1030 – Ingenieurmethoden 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lage, einen gemeinsamen Lernprozess erfolgreich zu gestalten,</td>
</tr>
<tr>
<td>• können Laborprotokolle anfertigen,</td>
</tr>
<tr>
<td>• erlernen Techniken des Protokollierens und Exzerpierens,</td>
</tr>
<tr>
<td>• sind in der Lage nachvollziehbare und strukturierte Vorlesungsmitschriften anzufertigen,</td>
</tr>
<tr>
<td>• kennen das Vier-Seiten-Modell der Kommunikation und können es auf einfache Gesprächssituationen anwenden,</td>
</tr>
<tr>
<td>• kennen die üblichen Mittel zur Kommunikation im Berufssalltag (Telefonat, Brief, Mail, Terminabsprachen) sowie die entsprechenden Umgangsformen und können diese zielgerichtet einsetzen sowie</td>
</tr>
<tr>
<td>• kennen Kreativitäts- und Problemlösungstechniken wie das Ichikawa-Diagramm oder die Walt-Disney-Methode und können diese anwenden.</td>
</tr>
</tbody>
</table>

Technisches Englisch: Die Studierenden
• verstehen englische Fachtexte
• können einfache Fachtexte in englischer Sprache verfassen und
• können eine alltägliche englische Konversation führen.

<table>
<thead>
<tr>
<th>Inhalte</th>
<th>Lern- und Arbeitstechniken:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Planungstechniken:</td>
</tr>
<tr>
<td></td>
<td>- Strukturierung von Projekten (Arbeitspakete, Meilensteine)</td>
</tr>
<tr>
<td></td>
<td>- Erstellen von Terminplänen</td>
</tr>
<tr>
<td></td>
<td>- Eisenhower-Schema zur Priorisierung</td>
</tr>
<tr>
<td></td>
<td>• Lerntechniken:</td>
</tr>
<tr>
<td></td>
<td>- Kognitive Lernschritte</td>
</tr>
<tr>
<td></td>
<td>- Strukturierung von Vorlesungsmitschriften</td>
</tr>
<tr>
<td></td>
<td>- Lerntagebuch</td>
</tr>
<tr>
<td></td>
<td>- Gestaltung von Lerngruppen</td>
</tr>
<tr>
<td></td>
<td>- Informationsbeschaffung</td>
</tr>
<tr>
<td></td>
<td>- Bibliotheksbenutzung</td>
</tr>
<tr>
<td></td>
<td>• Arbeitstechniken:</td>
</tr>
<tr>
<td></td>
<td>- Protokollieren</td>
</tr>
<tr>
<td></td>
<td>- Zitieren</td>
</tr>
<tr>
<td></td>
<td>- Vorbereiten von Laborversuchen</td>
</tr>
<tr>
<td></td>
<td>- Anfertigen von Laborberichten</td>
</tr>
<tr>
<td></td>
<td>- Mind-Mapping</td>
</tr>
<tr>
<td></td>
<td>- Kreativitätstechniken (Brainstorming, Ishikawa-Diagramm, Walt-Disney-Methode)</td>
</tr>
<tr>
<td></td>
<td>• Kommunikation:</td>
</tr>
<tr>
<td></td>
<td>- Vier-Seiten-Modell der Kommunikation</td>
</tr>
<tr>
<td></td>
<td>- Metakommunikation</td>
</tr>
<tr>
<td></td>
<td>- Phasen eines Teams</td>
</tr>
</tbody>
</table>
ISS1030 – Ingenieurmethoden 1

<table>
<thead>
<tr>
<th>Technisches Englisch:</th>
<th>Arbeiten mit verschiedenen englischen Fachtexten wie Bedienungsanleitungen, technischen Beschreibungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>Workload: 120 Stunden (4 Credits x 30 Stunden)
Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)
Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
<td>Drei Ausarbeitungen (Hausaufgaben)
Zwei schriftliche Testate
Klausur in Technischem Englisch</td>
</tr>
<tr>
<td>Geplante Gruppengröße</td>
<td>ca. 70 Studierende</td>
</tr>
<tr>
<td>Literatur</td>
<td>Krengel, Martin; Der Studi-Survival-Guide; Berlin; uni-edition; 2. Aufl., 2008
Schubert-Henning, Sylvia; Toolbox-Lernkompetenz für erfolgreiches Studieren; Bielefeld, UniversitätsVerlagWebler, 2007
Schulz von Thun, Friedemann; Miteinander reden; Reinbek bei Hamburg; Rowohlt; Sonderausgabe, 2006
Skripte und Anleitungen des Moduls</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Letzte Änderung: 01.03.2013</td>
</tr>
</tbody>
</table>
DRITTES SEMESTER

<table>
<thead>
<tr>
<th>MEC2140 – Automatisierungstechnik 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennziffer</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
</tr>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
</tbody>
</table>
| SWS | Vorlesungen: 4 SWS
Labor: 1 SWS |
| Studiensemester | 3. Semester |
| Häufigkeit | im Wintersemester |
| Dauer des Moduls | 1 Semester |
| Prüfungsart/en, Prüfungsdauer | PLK/PLM, jeweils 60 Minuten
UPL |
| Lehrsprache | deutsch |
| Teilnahmeveraussetzungen | Formale Voraussetzungen: Bestehen des 1. Studienabschnitts
Inhaltliche Voraussetzungen: Kenntnisse aus den Modulen Naturwissenschaftliche Grundlagen, Mathematik 2, Grundlagen der Elektrotechnik, Technische Informatik |
| zugehörige Lehrveranstaltungen | EEN2065 Signalverarbeitung
MEC2041 Steuerungstechnik
MEC2043 Labor Steuerungstechnik |
| Dozenten/Dozentinnen | Prof. Dr. rer. nat. Stefan Bernhard (Signalverarbeitung)
Prof. Dr.-Ing. Stefan Hillenbrand (Steuerungstechnik)
Prof. Dr.-Ing. Stefan Hillenbrand, Dipl.-Phys. Michael Bauer,
Dipl.-Ing. Dieter Gann (Labor Steuerungstechnik) |
| Lehrformen der Lehrveranstaltungen des Moduls | Vorlesungen
Labor |
| Ziele | Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Automatisierungstechnik nimmt in der Mechatronik eine zentrale Rolle ein, da sie das Zusammenwirken der mechanischen, elektronischen und informationstechnischen Teilsysteme steuert.
Nach einer Einführung in die grundlegenden Begriffe der Automatisierungstechnik lernen die Studenten aufbauend auf Ihren bereits vorhandenen Kenntnissen der Digital- |
MEC2140 – Automatisierungstechnik 1

Technik Zustandsautomaten und Petrinetze als theoretische Grundlage zur Beschreibung und Steuerung ereignisdiskreter technischer Prozesse kennen. Parallel dazu wird die praktische Umsetzung von Steuerungen erlernt und eingeübt. Hierbei werden die Steuerungsentwicklung nach der Norm IEC-61131, die Programmierung mit prozeduralen Programmiersprachen und auch das im Bereich von Forschung und Wissenschaft weit verbreitete Werkzeug MATLAB/Simulink/Statflow behandelt.

Lernziele:

Die Studierenden
- können ereignisdiskreter Systeme mit Hilfe von Zustandsautomaten und Petrinetzen beschreiben,
- kennen die Grundlagen der Theorie diskreter Automatisierungssysteme,
- sind in der Lage, Zustandsautomaten in einer prozeduralen Programmiersprache umzusetzen,
- kennen die Grundlage der Entwicklung von Automatisierungssystemen nach IEC 61131,
- kennen die wichtigsten Verfahren und Algorithmen der Signalverarbeitung.

Inhalte

Vorlesung Signalverarbeitung:
- Darstellung von Signalen
- Transformationen in der Signalverarbeitung
- Spektrale Analyse
- Diskretisierung von Signalen
- Digitale Verarbeitung von Signalen
- Lineare, zeitinvariante diskrete Systeme
- Digitale Filter

Vorlesung Steuerungstechnik:
- Grundbegriffe der Automatisierungstechnik
- Anwendung der Schaltalgebra für die Entwicklung von Steuerungen
- Aufbau und Arbeitsweise Speicherprogrammierbarer Steuerungen (SPS)
- Entwicklung von Steuerungen nach IEC 61131
MEC2140 – Automatisierungstechnik 1

| Verwendbarkeit des Moduls in anderen Studiengängen | Das Modul ist verwendbar im Studiengang:
| • Bachelor Medizintechnik |
| --- | --- |
| **Workload** | **Workload**: 150 Stunden (5 Credits x 30 Stunden)
Präsenzstudium: 75 Stunden (5 SWS x 15 Wochen)
Eigenstudium: 75 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |
| **Voraussetzung für die Vergabe von Credits** | Bestandene Klausuren sowie erfolgreiche Absolvierung des Labors. |
| **Stellenwert Modulnote für Endnote** | Gewichtung 4 |
| **Geplante Gruppengröße** | Vorlesungen: ca. 70 Studierende
Labor: ca. 20 Studierende |
| **Literatur** |
- Föllinger, Otto: Laplace-, Fourier- und z-Transformation, |
MEC2140 – Automatisierungstechnik 1

<table>
<thead>
<tr>
<th>Hüthig Verlag Heidelberg, 9. Aufl. 2007</th>
</tr>
</thead>
</table>

Skripte/Webseiten

<table>
<thead>
<tr>
<th>Skripte und Laboranleitungen des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www.lntwww.de</td>
</tr>
</tbody>
</table>

Letzte Änderung 15.11.2013
<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>EEN2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Frank Niemann</td>
</tr>
<tr>
<td>Level</td>
<td>Fortgeschrittenes Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesungen: je 2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Wintersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM, 90 Minuten</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienabschnitts</td>
</tr>
<tr>
<td></td>
<td>Inhaltliche Voraussetzungen: Kenntnisse aus den ersten drei Semestern des Studiums.</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>EEN2021 Kommunikationsprotokolle EEN2022 Feldbussysteme</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Frank Niemann (Kommunikationsprotokolle)</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Martin Pfeiffer (Feldbussysteme)</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesungen</td>
</tr>
<tr>
<td>Ziele</td>
<td>Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden kennen grundlegende Begriffe, Konzepte und Methoden der Kommunikationstechnik und der Feldbussysteme. Sie können diese auch im interdisziplinären Kontext lösungsorientiert umsetzen und vermitteln.</td>
</tr>
<tr>
<td></td>
<td>Lernziele:</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• kennen die Grundprinzipien von Kommunikationsprotokollen, Kommunikationsnetzen und Feldbussystemen</td>
</tr>
<tr>
<td></td>
<td>• können Protokolle an Hand des OSI-Referenzmodells einordnen und</td>
</tr>
<tr>
<td></td>
<td>• kennen und verstehen unterschiedliche Vermittlungsprinzipien.</td>
</tr>
<tr>
<td>Inhalte</td>
<td>Vorlesung Kommunikationsprotokolle:</td>
</tr>
<tr>
<td></td>
<td>• Arten und Eigenschaften von Kommunikationsnetzen, rechtlicher Rahmen in der Telekommunikation</td>
</tr>
<tr>
<td></td>
<td>• OSI-Referenzmodell und Standardisierungsgremien</td>
</tr>
</tbody>
</table>
EEN2020 – Rechnernetze

- Eigenschaften und Beispiele für Protokolle der OSI-Schichten 1-7
- Rahmenbildung, Flusssteuerung, Fehlererkennung und -korrektur, Authentisierungsverfahren, HDLC, PPP
- Vielfachzugriffsverfahren: deterministischer Vielfachzugriff, Token-Verfahren, stochastischer Vielfachzugriff
- Local Area Networks (LAN), Ethernet, ARP
- TCP/IP Protokoll Suite
- Routing in Fernsprechnetzen und im Internet
- Protokolle der Anwendungsschicht: Telnet, (T)FTP, HTTP, SMTP

Vorlesung Feldbussysteme:
- Übersicht über die gebräuchlichen Feldbusse
- Physikalische Übertragungseigenschaften
- Anwendungsnahe Eigenschaften und Anwendungsschnittstellen

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls in anderen Studiengängen</th>
<th>Das Modul ist verwendbar im Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Bachelor Elektrotechnik/ Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>• Bachelor Technische Informatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
<th>Workload: 150 Stunden (5 Credits x 30 Stunden)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für die Vergabe von Credits</th>
<th>Bestandene Modulklausur.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stellenwert Modulnote für Endnote</th>
<th>Gewichtung 5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geplante Gruppengröße</th>
<th>Vorlesung: ca. 70 Studierende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labor: ca. 20 Studierende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
<th>Vorlesung Kommunikationsprotokolle:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Weidenfeller, Hermann; Benkner, Thorsten: Telekommunikationstechnik: Informationsübertragung und Netze. Schlembach-Fachverlag Weil der Stadt 2002</td>
</tr>
<tr>
<td></td>
<td>• Tanenbaum, Andrew S.: Computernetzwerke. Pearson Verlag München, 4. Aufl. 2005</td>
</tr>
</tbody>
</table>
EEN2020 – Rechnernetze

<table>
<thead>
<tr>
<th>Vorlesung Feldbussysteme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Schnell, Gerhard; Wiedemann, Bernhard (Hrsg.): Busysteme in der Automatisierungs- und Prozesstechnik: Grundlagen, Systeme und Trends der industriellen Kommunikation. Vieweg Verlag Wiesbaden 2006</td>
</tr>
</tbody>
</table>

• Skripte des Moduls

<p>| Letzte Änderung | 01.03.2013 |</p>
<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>CEN2150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Frank Kesel</td>
</tr>
<tr>
<td>Level</td>
<td>Fortgeschrittenes Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesung: 3 SWS Labor: 1 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Wintersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM, 60 Minuten UPL</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: keine Inhaltliche Voraussetzungen: informationstechnische Grundlagen, Kenntnisse aus dem Modul Informatik 1</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>CEN2151 Mikrocontroller CEN2152 Labor Mikrocontroller</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Frank Kesel (Mikrocontroller) Prof. Dr.-Ing. Frank Kesel, Dipl.-Ing. (FH) Joachim Hampel und Dipl.-Ing. (FH) Andreas Reber (Labor Mikrocontroller)</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung Labor</td>
</tr>
<tr>
<td>Ziele</td>
<td>Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs: Die Studierenden erwerben die Fähigkeit, den Aufbau eines Mikrocontrollers zu verstehen und eine gegebene Aufgabenstellung selbstständig in ablauffähige Mikrocontroller-Programme mit C oder Assembler umzusetzen. Lernziele: Die Studierenden • lernen den grundsätzlichen Aufbau von Mikrocontrollern am Beispiel des ARM Cortex M0 kennen, • verstehen die Befehlssatzarchitektur eines typischen Mikrocontrollers, • beherrschen die Programmierung von Peripherieeinheiten eines Mikrocontrollers, • lernen die Besonderheiten der hardwarenahen Programmierung eines Mikrocontrollers in der Hochsprache C</td>
</tr>
</tbody>
</table>
Inhalte

- Einführung in Mikrocontroller
- Der Cortex-M0-Mikrocontroller
- Programmierung des Cortex M0
- Nutzung von Peripherieeinheiten
- Exceptions und Interrupts
- Programmierung in Assembler

Workload

| Workload: 150 Stunden (5 Credits x 30 Stunden) |
| Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen) |
| Eigenstudium: 90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |

Voraussetzung für die Vergabe von Credits

Bestandene Modulklausur sowie erfolgreiche Absolvierung des Labors.

Stellenwert Modulnote für Endnote

Gewichtung 3

Geplante Gruppengröße

Vorlesung: ca. 70 Studierende
Labor: ca. 20 Studierende

Literatur

- Skripte und Laboranleitungen des Moduls

Letzte Änderung

01.03.2013
<table>
<thead>
<tr>
<th>MEC2130 – Maschinenbau 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennziffer</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
</tr>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
</tbody>
</table>
| **SWS** | Vorlesung: 3 SWS
Übung: 1 SWS |
| **Studiensemester** | 3. Semester |
| **Häufigkeit** | im Wintersemester |
| **Dauer des Moduls** | 1 Semester |
| **Prüfungssystem, Prüfungsdauer** | PLK/PLM, 90 Minuten
UPL |
| **Lehrsprache** | deutsch |
| **Teilnahmeverhältnisse** | Formale Voraussetzungen: keine
Inhaltliche Voraussetzungen: Kenntnisse aus den Modulen
Maschinenbau 1 und 2 |
| **zugehörige Lehrveranstaltungen** | MEC2131 Kinetik
MEC2132 Übung Kinetik |
| **Dozenten/Dozentinnen** | Prof. Dr.-Ing. Marcus Simon (Kinetik)
Prof. Dr.-Ing. Marcus Simon (Übungen Kinetik) |
| **Lehrformen der Lehrveranstaltungen des Moduls** | Vorlesung
Übung |
| **Ziele** | Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden erwerben die Fähigkeit, bewegte mechanische Systeme zu verstehen. Sie sind in der Lage eigenständig Probleme zu lösen und diese verständlich darzustellen.
Lernziele:
Die Studierenden
• verstehenn die drei Newtoschen Axiome,
• können für Punktmassen Bewegungsgleichungen herleiten und lösen,
• verstehen den Arbeitssatz und können damit für Punktmassen zeitfreie Bewegungsgleichungen herleiten,
• verstehen den Energiesatz mit dessen Voraussetzungen und können für Punktmassen zeitfreie Bewegungsgleichungen herleiten,
• können mit Hilfe der Impulssätze Stöße behandeln,
• lernen mit bewegten Koordinatensystemen zu arbeiten und
• verstehem die Erweiterung der Grundprinzipien auf starre Körper. |
MEC2130 – Maschinenbau 3

| Inhalte | Punktmassenmechanik
| - Prinzip von d’Alembert
| - Arbeitssatz
| - Energiesatz
| - Impulssatz und Drehimpulssatz
| - Relativmechanik
| • Kinematik und Kinetik starrer Körper
| - Ebene Kinematik starrer Körper
| - Schwerpunktsatz
| - Arbeitssatz und Energiesatz
| - Impuls- und Drehimpulssatz |

| Workload | **Workload**: 150 Stunden (5 Credits x 30 Stunden)
| - Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)
| - Eigenstudium: 90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |

| Voraussetzung für die Vergabe von Credits | Bestandene Modulklausur sowie erfolgreiche Absolvierung der Übung. |

| Stellenwert Modulnote für Endnote | Gewichtung 5 |

| Geplante Gruppengröße | Vorlesung: ca. 70 Studierende
| Übung: ca. 70 Studierende |

| • Hibbeler, Russel C. Technische Mechanik 3. Dynamik, 10. Auflage, Pearson-Verlag |

| Letzte Änderung | 01.03.2013 |
MEC2150 – Sensorik und Aktorik

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>MEC.2150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Alexander Hetznecker</td>
</tr>
<tr>
<td>Level</td>
<td>Fortgeschrittenes Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesung: 3 SWS Labor: 1 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Wintersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM, 2x 60 Minuten UPL</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienabschnitts</td>
</tr>
<tr>
<td></td>
<td>Inhaltliche Voraussetzungen: Kenntnisse in Elektrotechnik, Physik und Messtechnik</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>MEC2151 Sensorik und Aktorik</td>
</tr>
<tr>
<td></td>
<td>MEC2152 Labor Sensorik und Aktorik</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Alexander Hetznecker (Sensorik und Aktorik)</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesungen Labor</td>
</tr>
<tr>
<td>Ziele</td>
<td>Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden erwerben Hintergrundwissen zur Funktionsweise gängiger Sensoren und Aktoren, von der physikalischen Grundlagenebene bis zur praktischen Anwendung. Dabei werden die Schnittstellen zu anderen Disziplinen gepflegt und intensiviert.</td>
</tr>
<tr>
<td></td>
<td>Lernziele:</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• kennen grundlegende Definitionen, den Stand der Technik und aktuelle Entwicklungen,</td>
</tr>
<tr>
<td></td>
<td>• hatten Einblick in grundlegende Sensor- und Aktormechanismen zur Einstellung und Detektion von mechani-</td>
</tr>
</tbody>
</table>
MEC2150 – Sensorik und Aktorik

<table>
<thead>
<tr>
<th>Inhalte</th>
<th>Vorlesung Sensorik und Aktorik:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Definitionen (Empfindlichkeit, Selektivität etc.)-</td>
</tr>
<tr>
<td></td>
<td>• Derzeitige Entwicklungsrichtungen-</td>
</tr>
<tr>
<td></td>
<td>• Stellenwert der Sensorik und Aktorik in verschiedenen Bereichen-</td>
</tr>
<tr>
<td></td>
<td>• Sensor- und Aktormechanismen: Resistiv, kapazitiv, induktiv, elektromagnetisch, thermoelektrisch, piezoelektrisch.</td>
</tr>
<tr>
<td></td>
<td>• Auswerteschaltungen: Brückenschaltungen, Instrumentenverstärker, Trägerfrequenzverstärker, RCL-Messschaltungen, Ladungsverstärker.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labor Sensorik und Aktorik:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aufbau und Anwendung von Sensorsystemen sowie geregelter Sensor/Aktorsystemen für verschiedene Messgrößen.</td>
</tr>
<tr>
<td>• Sensibilisierung für Empfindlichkeit, Signal-Rauschverhältnis, Drift.</td>
</tr>
<tr>
<td>• Vorgehensweise zum Aufbau und Test einzelner Komponenten, sowie zur der Fehlersuche am Gesamtsystem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
<th>Workload: 150 Stunden (5 Credits x 30 Stunden)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für die Vergabe von Credits</th>
<th>Bestandene Klausuren sowie erfolgreiche Absolvierung des Labors.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stellenwert Modulnote für Endnote</th>
<th>Gewichtung 4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geplante Gruppengröße</th>
<th>Vorlesungen: ca. 70 Studierende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labor: ca. 20 Studierende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
<th>• Niebuhr, Johannes; Lindner, Gerhard: Physikalische Messtechnik mit Sensoren. Oldenbourg-Industrieverlag München, 6. Aufl. 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Schaumburg, Hanno: Sensoren (Werkstoffe und Bauelemente), Band 3. Teubner Stuttgart 1992</td>
</tr>
<tr>
<td></td>
<td>• Jendritza, Daniel J: Technischer Einsatz neuer Aktoren. expert-Verlag, 2. Aufl. 1998</td>
</tr>
<tr>
<td>MEC2150 – Sensorik und Aktorik</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>• Journal: Sensors and Actuators. A: Physical, B: Chemical</td>
<td></td>
</tr>
<tr>
<td>• Skripte und Laboranleitungen des Moduls</td>
<td></td>
</tr>
</tbody>
</table>

Letzte Änderung: 01.03.2013
<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>EEN2200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Mike Barth</td>
</tr>
<tr>
<td>Level</td>
<td>Fortgeschrittenes Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>4 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>3. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Wintersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/Prüfungsdauer</td>
<td>PLP</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienab-</td>
</tr>
<tr>
<td></td>
<td>schnitts</td>
</tr>
<tr>
<td></td>
<td>Inhaltliche Voraussetzungen: Kenntnisse aus dem bisherigen</td>
</tr>
<tr>
<td></td>
<td>Studium.</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>alle Dozenten des Studiengangs</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Kolloquium</td>
</tr>
<tr>
<td>Ziele</td>
<td>Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden wenden im Rahmen einer ersten Projekt-</td>
</tr>
<tr>
<td></td>
<td>arbeit fachliches Wissen der Mechatronik zur Lösung einer konkreten Aufgabenstellung an. Sie setzen die gelernten Methoden um, sich einen Projektplan aufzustellen und die Aufgabe in Arbeitspakete aufzuteilen. Sie üben unter Anleitung die Selbstorganisation und lernen die schrittweise Umsetzung des Projektziels. Durch die Bearbeitung der Aufgabe in Projektteams kommunizieren sie sowohl mit dem Betreuer als auch mit anderen Teammitgliedern. Sie dokumentieren ihre Ergebnisse und präsentieren sie in einem kurzen Vortrag.</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls in anderen Studiengängen</td>
<td>Das Modul ist verwendbar im Studiengang:</td>
</tr>
<tr>
<td></td>
<td>• Bachelor Elektrotechnik/Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>• Bachelor Medizintechnik</td>
</tr>
<tr>
<td></td>
<td>• Bachelor Technische Informatik</td>
</tr>
<tr>
<td>Workload</td>
<td>Eigenstudium 150 Stunden (Einarbeitung, Durchführung, Dokumentation, Kolloquium) und Coaching</td>
</tr>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
<td>Bestandene Projektarbeit.</td>
</tr>
<tr>
<td>Letzte Änderung</td>
<td>01.10.2013</td>
</tr>
</tbody>
</table>
VIERTES SEMESTER

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>EEN2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Wolf-Henning Rech</td>
</tr>
<tr>
<td>Level</td>
<td>Fortgeschrittenes Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>4 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM, 60 Minuten UPL</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmeveraussetzungen</td>
<td>Formale Voraussetzungen: keine Inhaltliche Voraussetzungen: Kenntnisse aus dem 1. Studienabschnitt</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>EEN2054 Elektronik EEN2055 Labor Elektronik ISS2043 Präsentieren und Dokumentieren</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung Labor Übung</td>
</tr>
</tbody>
</table>
| Ziele | Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs: Die Studierenden verstehen grundlegende interdisziplinäre Zusammenhänge aus der Elektronik und erwerben Fähigkeiten zum erfolgreichen schriftlichen und mündlichen Präsentieren. Lernziele: Die Studierenden • kennen und verstehen die Schaltung von Oszillatoren • kennen und verstehen die wichtigsten Schaltungen zur Stromversorgung elektronischer Baugruppen und können diese anwenden, • kennen und verstehen den inneren Aufbau analoger in-
<table>
<thead>
<tr>
<th>EEN2040 – Elektronik</th>
</tr>
</thead>
<tbody>
<tr>
<td>tegrierter Schaltungen grundlegend,</td>
</tr>
<tr>
<td>• kennen und verstehen die nichtidealen Eigenschaften von Operationsverstärkern und können diese anwenden,</td>
</tr>
<tr>
<td>• kennen und verstehen weitere analoge integrierte Schaltungen wie Komparator und Analogschalter,</td>
</tr>
<tr>
<td>• kennen und verstehen aktive Tiefpassfilter und A/D- und D/A-Wandler und können diese anwenden,</td>
</tr>
<tr>
<td>• können die theoretischen Kenntnisse aus der Vorlesung Elektronik an Praxisbeispielen anwenden,</td>
</tr>
<tr>
<td>• kennen und verstehen grundlegende Messgeräte und Messverfahren der analogen Elektronik und können diese anwenden,</td>
</tr>
<tr>
<td>• lernen Präsentationstechniken und den Umgang mit modernen Medien,</td>
</tr>
<tr>
<td>• üben ein sicheres Auftreten vor Gruppen,</td>
</tr>
<tr>
<td>• werden sicher im Verfassen von Projektberichten und technischen Dokumentationen und</td>
</tr>
<tr>
<td>• lernen den Umgang mit gebräuchlichen Textverarbeitungssystemen, insbesondere Formatvorlagen und Lay-outs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Elektronik:</td>
</tr>
<tr>
<td>• Oszillatorschaltungen</td>
</tr>
<tr>
<td>• Stromversorgungsschaltungen</td>
</tr>
<tr>
<td>• Innerer Aufbau eines OPV</td>
</tr>
<tr>
<td>• Nichteideale Eigenschaften von OPVs</td>
</tr>
<tr>
<td>• Analogschalter</td>
</tr>
<tr>
<td>• Filterschaltungen</td>
</tr>
<tr>
<td>• Spannungskomparator und dessen Anwendung</td>
</tr>
<tr>
<td>• A/D- und D/A-Wandler</td>
</tr>
<tr>
<td>Labor Elektronik:</td>
</tr>
<tr>
<td>• Halbleiterdiode</td>
</tr>
<tr>
<td>• Bipolartransistor und FET</td>
</tr>
<tr>
<td>• Oszillatoren</td>
</tr>
<tr>
<td>• Operationsverstärker</td>
</tr>
<tr>
<td>• Tiefpaßfilter</td>
</tr>
<tr>
<td>• D/A-Wandler</td>
</tr>
<tr>
<td>Präsentieren und Dokumentieren:</td>
</tr>
<tr>
<td>• Präsentationstechnik:</td>
</tr>
<tr>
<td>- Körpersprache, Gestik, Mimik</td>
</tr>
<tr>
<td>- Sprache und Stimme</td>
</tr>
<tr>
<td>- Gliederung mit 5-Satz-Technik</td>
</tr>
<tr>
<td>- Umgang mit PowerPoint, Laptop und Beamer (praktisches Üben am PC)</td>
</tr>
<tr>
<td>- sinnvoller Einsatz verschiedener Medien</td>
</tr>
</tbody>
</table>
EEN2040 – Elektronik

- Technische Dokumentation:
 - Stilistik
 - Formaler Aufbau von Dokumenten
 - Grundbegriffe der Typographie und Printgestaltung
 - Praktische Übungen am PC (Gliederung, Arbeiten mit Formatvorlagen, Inhaltsverzeichnis, usw.)

Workload

<table>
<thead>
<tr>
<th>Workload: 150 Stunden (5 Credits x 30 Stunden)</th>
<th>Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenstudium: 90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzung für die Vergabe von Credits

Bestandene Klausur sowie erfolgreiche Absolvierung des Labors und der Übung.

Stellenwert Modulnote für Endnote

Gewichtung 2

Geplante Gruppengröße

Vorlesung: ca. 30 Studierende

Literatur

- Tietze, Ulrich; Schenk, Christoph: Halbleiter-Schaltungstechnik. Springer Berlin Heidelberg, 13. Aufl. 2010

Aufgabensammlungen:

- Skripte und Laboranleitungen des Moduls

Letzte Änderung

01.03.2013
Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Als Basis für den Entwurf von Regelkreisen lernen die Studierenden die mathematische Modellbildung einfacher mechatronischer Systeme kennen und können die sich dabei ergebenden Differentialgleichungen mit Hilfe der Laplacetransformation in Übertragungsfunktionen überführen. Diese sind
MEC2160 – Automatisierungstechnik 2

die Grundlage zur Untersuchung der dynamischen und stationären Eigenschaften von Regelkreisen und damit für den Entwurf von Regelungen.

Parallel zur Behandlung der notwendigen Theorie lernen die Studierenden das in Forschung und Industrie weitverbreitete Werkzeug MATLAB/Simulink zur Simulation und für den Reglerentwurf kennen.

Lernziele:
Die Studierenden
- können für einfache mechatronische Systeme die mathematische Modellbildung durchführen,
- können nichtlineare Systemgleichungen in einem Arbeitspunkt linearisieren,
- können die linearisierten Systemgleichungen in Übertragungsfunktionen überführen und damit das Strukturbild des Systems erstellen und mit Hilfe von MATLAB/Simulink simulieren,
- können Eigenschaften (z. B. Stabilität) dynamischer Systeme anhand der Übertragungsfunktion analysieren.
- kennen die Grundstruktur einer Regelschleife
- wissen, wie durch die Rückkopplung des Regelkreises die dynamischen und statischen Eigenschaften des Systems gezielt beeinflusst werden können,
- kennen grundlegende Methoden zur Untersuchung der Stabilität von Regelkreisen,
- können PID-Regler ausgehend vom Systemmodell entwerfen,
- kennen die Vorgehensweise, wie sie ausgehend von einer tatsächlichen Problemstellung zu einer funktionierenden Regelung kommen.

Inhalte

Vorlesung Regelungstechnik:
- Übertragungsverhalten dynamischer Systeme: Sprungantwort, Impulsantwort, Übertragungsfunktion
- Elementare Übertragungsglieder
- Aufstellen des Strukturbildes
- Linearisierung an einem Arbeitspunkt
- Stabilität von Übertragungsgliedern und Regelkreisen
MEC2160 – Automatisierungstechnik 2

- Hurwitz-Kriterium zur Stabilitätsanalyse
- Anforderungen an den Regelkreis
- Stabilität und stationäre Genauigkeit von Regelkreisen
- PID-Regler
- Grundlagen der Reglerrealisierung

Labor Regelungstechnik:
- Kennenlernen und Analyse der Versuchsanlage zur Füllstandsregelung
- Durchführung von Messungen an der Versuchsanlage
- Auswertung der Messungen mit MATLAB, Methode der kleinsten Quadrate zur Ermittlung von Parametern und Kennlinien
- Aufstellen eines Simulationsmodells der Versuchsanlage mit Simulink, Vergleich Simulation – Messung
- Linearisierung des Modells im Arbeitspunkt
- Entwurf von Reglern für die Füllstandsregelung mithilfe des linearisierten Modells
- Erprobung der Regler in der Simulation
- Umsetzung eines Reglers an der Versuchsanlage

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls in anderen Studiengängen</th>
<th>Das Modul ist verwendbar im Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Bachelor Medizintechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload: 120 Stunden (4 Credits x 30 Stunden)</td>
</tr>
<tr>
<td>Präsenzstudium: 45 Stunden (3 SWS x 15 Wochen)</td>
</tr>
<tr>
<td>Eigenstudium: 75 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für die Vergabe von Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandene Klausur sowie erfolgreiche Absolvierung des Labors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellenwert Modulnote für Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesungen: ca. 70 Studierende</td>
</tr>
<tr>
<td>Labore: ca. 20 Studierende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lunze, Jan: Regelungstechnik I. Springer Verlag, 8. Aufl. 2010</td>
</tr>
<tr>
<td>• Heinz Unbehauen: Regelungstechnik I. Vieweg+Teubner Verlag, 15. Aufl. 2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Letzte Änderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.11.2013</td>
</tr>
</tbody>
</table>

Skripte und Laboranleitungen des Moduls
CEN2240 – Software Engineering

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>CEN2240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. rer. nat. Peer Johannsen</td>
</tr>
<tr>
<td>Level</td>
<td>Fortgeschrittenes Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesung: 3 SWS</td>
</tr>
<tr>
<td></td>
<td>Labor: 1 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM, 90 Minuten</td>
</tr>
<tr>
<td></td>
<td>UPL</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr. rer. nat. Richard Alznauer (Software Engineering)</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. rer. nat. Richard Alznauer, Dipl.-Ing.(FH) Peter Biharlich (Labor Software Engineering)</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>CEN2041 Software Engineering</td>
</tr>
<tr>
<td></td>
<td>CEN2045 Labor Software Engineering</td>
</tr>
<tr>
<td>Teilnahmeveranlag-</td>
<td>Formale Voraussetzungen: keine</td>
</tr>
<tr>
<td>stellungen</td>
<td>Inhaltsliche Voraussetzungen: Kenntnisse der Programmiersprache C++ und der Modellierungsmethode UML, wie sie z.B. durch das Modul Informatik 2 erworben werden können.</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Labor</td>
</tr>
<tr>
<td>Ziele</td>
<td>Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden kennen und verstehen die Prinzipien und Methoden des professionellen Software-Engineering</td>
</tr>
<tr>
<td></td>
<td>Sie sind in der Lage, diese Methoden durchgängig bei der ingenieurmaßigen Umsetzung von informations-technischen Lösungen in einem interdisziplinären Arbeitsumfeld einzubringen.</td>
</tr>
<tr>
<td></td>
<td>Lernziele:</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>erkennen Software-Engineering als professionelle Disziplin mit interdisziplinem Anforderungsprofil,</td>
</tr>
<tr>
<td></td>
<td>kennen und verstehen die Funktion und Ausgestaltung eines Prozessmodells für die professionelle Entwicklung</td>
</tr>
</tbody>
</table>
CEN2240 – Software Engineering

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
</table>
| von Software-Produkten,
 • verstehen die Aufgaben und Lösungsmethoden der Software-Konfigurationsverwaltung,
 • können gängige Software-Konfigurationswerkzeuge anwenden und einfache Software-Konfigurationsaufgaben lösen,
 • kennen und verstehen die UML Methode und können diese in Bezug auf die Aufgabenstellung in den einzelnen Software-Entwicklungsprozess-Phasen anwenden und
 • verstehen grundlegende Planungs-, Qualitätssicherungs- und Testmethoden und können die Review-Technik in diesen Bereichen anwenden. |

| Vorlesung Software Engineering:
 • Software-Engineering als professionelle Disziplin
 • Projekte, Personen, Prozesse, Produkte und Leistungen
 • Software-Engineering-Prozesse (Vorgehensmodelle, Der Unified Process)
 • Projektmanagement
 • Projektplanung (Zeit, Aufwand, Ressourcen)
 • Projektkontrolle
 • Teams
 • Qualitätsmanagement (Qualitätssicherung, Standards, Methoden, Konfigurationsmanagement)
 • Der Unified Process mit UML
 • Methoden der Anforderungsermittlung
 • Analyse- und Entwurfsmethoden
 • Implementierungsmethoden
 • Versions- und Variantenmanagement |

| Labor Software-Engineering
 • Schrittweiser Entwurf und Implementierung eines Computer-Spiels
 • Konfigurationsmanagement mit make |

<table>
<thead>
<tr>
<th>Workload</th>
</tr>
</thead>
</table>
| Workload: 150 Stunden (5 Credits x 30 Stunden)
 Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)
 Eigenstudium: 90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |

| Voraussetzung für die Vergabe von Credits |
| Bestandene Modulklausur sowie erfolgreiche Absolvierung des Labors. |

| Stellenwert Modulnote für Endnote |
| Gewichtung 4 |

| Geplante Gruppengröße |
| Vorlesungen: ca. 70 Studierende
 Labor: ca. 20 Studierende |
<table>
<thead>
<tr>
<th>CEN2240 – Software Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>• Mecklenburg, Robert William: Managing Projects with GNU Make. O’Reilly Beijing Köln u.a. 2005</td>
</tr>
<tr>
<td>• Spillner, Andreas; Linz, Tilo: Basiswissen Software-Test – Aus- und Weiterbildung zum Certified Tester. dpunkt-Verlag Heidelberg, 3. Aufl. 2005</td>
</tr>
<tr>
<td>• Skripte und Laboranleitungen des Moduls</td>
</tr>
</tbody>
</table>

| Letzte Änderung | 01.03.2013 |
MEC2070 – Modelbildung und Simulation

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>MEC2070</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Marcus Simon</td>
</tr>
<tr>
<td>Level</td>
<td>Fortgeschrittenes Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesung: 4 SWS</td>
</tr>
<tr>
<td></td>
<td>Labor: 1 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM, 90 Minuten</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienabschnitts</td>
</tr>
<tr>
<td></td>
<td>Inhaltliche Voraussetzungen: Kenntnisse aus dem 1. Studienabschnitt</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>MEC2071 Modellbildung und Simulation</td>
</tr>
<tr>
<td></td>
<td>MEC2072 Labor Modellbildung und Simulation</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Marcus Simon (Modellbildung und Simulation)</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Marcus Simon (Labor Modellbildung und Simulation)</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Labor</td>
</tr>
<tr>
<td>Ziele</td>
<td>Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden sind in der Lage reale dynamische Systeme zu verstehen und zu abstrahieren. Sie können selbständig ein mathematisches Modell erstellen und sind in der Lage eine entsprechende Simulation am Computer durchzuführen.</td>
</tr>
<tr>
<td></td>
<td>Lernziele:</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• kennen die Grundbegriffe der Modellbildung und Simulationstechnik,</td>
</tr>
<tr>
<td></td>
<td>• können Ergebnisse und Kinematiken animiert am Bildschirm darstellen,</td>
</tr>
<tr>
<td></td>
<td>• können gewöhnliche Dgl. simulieren und</td>
</tr>
<tr>
<td></td>
<td>• können für elektromechanische Systeme die beschreibenden Systemgleichungen aus einem Modell ermitteln.</td>
</tr>
</tbody>
</table>
MEC2070 – Modellbildung und Simulation

Inhalte

- **Animation:**
 - Räumliche Kinematik
 - homogene Koordinaten
 - Transformationsmatrizen
- **Numerische Simulation gewöhnlicher Dgl.:**
 - Euler-Verfahren
 - Runge-Kutta-Verfahren
- **Elektromechanische Systeme:**
 - Prinzip von d’Alembert in Lagrangescher Fassung
 - Lagrange Gleichungen 2. Art
 - Erweiterung auf elektromechanische Systeme,
 - Energie / Koenergie
- **Weiterführende Simulationsverfahren:**
 - FDV, FEM

Workload

<table>
<thead>
<tr>
<th>Workload:</th>
<th>150 Stunden (5 Credits x 30 Stunden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium:</td>
<td>60 Stunden (4 SWS x 15 Wochen)</td>
</tr>
<tr>
<td>Eigenstudium:</td>
<td>90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
</tbody>
</table>

Voraussetzung für die Vergabe von Credits

Bestandene Klausuren sowie erfolgreiche Absolvierung des Labors.

Stellenwert Modulnote für Endnote

Gewichtung 4

Geplante Gruppengröße

| Vorlesung: | ca. 70 Studierende |
| Labor: | ca. 3 * 25 Studierende |

Literatur

- Scherf, Helmut: Modellbildung und Simulation dynamischer Systeme, 4. Auflage, Oldenbourg-Verlag
- Greenwood, Donald: Classical Dynamics, Dover Publications, Inc
- Roos, Schwetlick: Numerische Mathematik, Teubner-Verlag Stuttgart Leipzig

Letzte Änderung

01.03.2013
MEC2180 – KFZ-Mechatronik

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>MEC2180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. habil. Oliver Zirn</td>
</tr>
<tr>
<td>Level</td>
<td>Fortgeschrittenes Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesungen: 4 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM, jeweils 60 Minuten</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen
Formale Voraussetzungen: Bestehen des 1. Studienabschnitts
Inhaltliche Voraussetzungen: Kenntnisse aus dem 1. Studienabschnitt

zugehörige Lehrveranstaltungen
MEC2081 Grundlagen der Fahrzeugtechnik
MEC2083 KFZ-Bordnetze

Dozenten/Dozentinnen
Prof. Dr.-Ing. habil. Oliver Zirn (Grundlagen der Fahrzeugtechnik)
Prof. Dr.-Ing. Martin Pfeiffer (KFZ-Bordnetze)

Lehrformen der Lehrveranstaltungen des Moduls
Vorlesungen

Ziele
Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden übertragen die Grundlagen der Mechatronik, der Mechanik, der Modellbildung und Simulation sowie die Kommunikationsgrundlagen auf das mechatronische System „Fahrzeug“

Lernziele:
Die Studierenden
- kennen die Fachsprache und wichtige Grundlagen der Fahrzeugtechnik, insbesondere die Fahrdynamik
- kennen Aufbau, Funktion und Anwendung wichtiger Baugruppen/Teilsysteme im Fahrzeug, z.B. Motor, Kennlinienwandler, Fahrwerk, ABS, CAN
- sind fähig, Anforderungen an Baugruppen und Teilsysteme zu formulieren
- sind im Stande, in einem interdisziplinären Entwicklungs- team in der Fahrzeugtechnik zu kommunizieren
| Workload | Workload: 150 Stunden (5 Credits x 30 Stunden)
Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)
Eigenstudium: 90 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
<td>Bestandene Klausuren</td>
</tr>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
<td>Gewichtung 5</td>
</tr>
</tbody>
</table>

Inhalte

Vorlesung Grundlagen der Fahrzeugtechnik:
- Einführung und Bedeutung der Fahrzeugtechnik
- Längsdynamik
 - Zugkraft und Lastkennlinie
 - Reifen und Fahrwerk
 - Beschleunigungs- und Steigfähigkeit
 - einfaches Längsmodell in Simulink
- Antrieb
 - Verbrennungsmotoren, Muscheldiagramm
 - Elektromotoren, Akkus
 - Kennlinienwandlung, Getriebetypen Längsg
- Testzyklen und Verbrauchsermittlung
 - DIN, NEFZ, CADC, WLTP
 - Rollenprüfstände, Windkanal
 - genaueres Längsmodell in Simulink
- Bremsen und ABS
- Querdynamik
 - Einspurmodell
 - Kipp- und Rutschgrenze
- Fahrzeugklimatisierung
- Ausblick Elektromobilität

Vorlesung KFZ-Bordnetze:
- Aufbau der Versorgungs- und Kommunikationsstruktur im Fahrzeug
- Bussysteme im Automobil
 - LIN
 - CAN (A, B, CANopen)
 - Flexray
 - Bluetooth
- Assistenten und Agenten
MEC2180 – KFZ-Mechatronik

<table>
<thead>
<tr>
<th>Geplante Gruppengröße</th>
<th>Vorlesungen: ca. 70 Studierende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Haken: Grundlagen der Kraftfahrzeugtechnik. Hanser-Fachbuch, 2013</td>
</tr>
<tr>
<td></td>
<td>• Mischke, Wallentowitz: Dynamik der Kraftfahrzeuge. Springer-VDI-Verlag, 2004</td>
</tr>
<tr>
<td></td>
<td>• Trautmann: Grundlagen der Fahrzeugmechatronik. Vieweg+Teubner-Verlag, 2009</td>
</tr>
<tr>
<td></td>
<td>• Skripte des Moduls</td>
</tr>
</tbody>
</table>

Letzte Änderung | 01.03.2013
MEC2300 – Projektarbeit 2

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>MEC2300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Mike Barth</td>
</tr>
<tr>
<td>Level</td>
<td>Fortgeschrittenes Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>4 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesung: 2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLP</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>alle Dozenten des Studiengangs</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Kolloquium</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Die Studierenden wenden im Rahmen einer weiterführenden Projektarbeit fachliches Wissen der Mechatronik zur Lösung einer konkreten Aufgabenstellung an. Sie setzen die gelernten Methoden weitestgehend selbstständig um, sich einen Projektplan aufzustellen und die Aufgabe in Arbeitspakete aufzuteilen. Sie üben unter Anleitung die Selbstorganisation und lernen die schrittweise Umsetzung des Projektziels. Durch die Bearbeitung der Aufgabe in Projektteams kommunizieren sie sowohl mit dem Betreuer als auch mit anderen Teammitgliedern. Sie dokumentieren ihre Ergebnisse und präsentieren sie in einem kurzen Vortrag.

Workload

Eigenstudium: 120 Stunden (Einarbeitung, Durchführung, Dokumentation, Kolloquium) und Coaching

Voraussetzung für die Vergabe von Credits

Erfolgreiche Absolvierung der Projektarbeit.

Stellenwert Modulnote für Endnote

Gewichtung 5

Letzte Änderung

01.10.2013
FÜNFTES SEMESTER

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>MEC3080</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Marcus Simon</td>
</tr>
<tr>
<td>Level</td>
<td>Berufsqualifizierendes akademisches Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>30 Credits</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>5. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Wintersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PVL-BP</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch, evtl. englisch, bzw. evtl. auch eine andere Sprache, wenn das Praxissemester im Ausland absolviert wird</td>
</tr>
</tbody>
</table>
| Teilnahmevoraussetzungen | Formale Voraussetzungen: Bestehen des 1. Studienabschnitts
Inhaltliche Voraussetzungen: Kenntnisse aus den Modulen des bisherigen Studiums. |
| zugehörige Lehrveranstaltungen | INS3083 Praxissemester
INS3051 Blockveranstaltung |
| Lehrformen der Lehrveranstaltungen des Moduls | Kolloquium |
| Ziele | Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
| Inhalte | Je nach Praktikumsbetrieb ist der Inhalt des Praxissemesters unterschiedlich. Die Blockveranstaltungen variieren ebenfalls in ihrer Thematik, vor allem im Hinblick auf die Aktualität der Themen. |
| Workload | Workload: 900 Stunden (30 Credits x 30 Stunden)
Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen) |
<table>
<thead>
<tr>
<th>MEC3080 – Praxissemester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenstudium: 840 Stunden (Praxis im gewählten Unternehmen)</td>
<td></td>
</tr>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
<td>Erfolgreiche Absolvierung des Praxissemesters und der Praxisberichte.</td>
</tr>
<tr>
<td>Letzte Änderung</td>
<td>01.03.2013</td>
</tr>
<tr>
<td>Kennziffer</td>
<td>MEC2030</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Marcus Simon</td>
</tr>
<tr>
<td>Level</td>
<td>fortgeschrittenes Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>6 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesungen: 4 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM, jeweils 60 Minuten</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienabschnitts</td>
</tr>
<tr>
<td></td>
<td>Inhaltliche Voraussetzungen: Kenntnisse aus dem 1. Studienabschnitt</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>MEC3031 Thermodynamik</td>
</tr>
<tr>
<td></td>
<td>MEC3032 Fluidmechanik</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Marcus Simon (Thermodynamik)</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Marcus Simon (Fluidmechanik)</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesungen</td>
</tr>
<tr>
<td></td>
<td>Lernziele: Fluidmechanik:</td>
</tr>
</tbody>
</table>
Die Studierenden können die aus der Kinetik bekannten Prinzipien auf Fluide übertragen. Sie können technische Strömungen berechnen und auslegen.

Thermodynamik:

Inhalte

<table>
<thead>
<tr>
<th>Thermodynamik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundbegriffe der Thermodynamik, Temperatur</td>
</tr>
<tr>
<td>1. Hauptsatz für geschlossene und offene Systeme</td>
</tr>
<tr>
<td>- Systemgrenzen, innere Energie</td>
</tr>
<tr>
<td>- Kreisprozesse</td>
</tr>
<tr>
<td>2. Hauptsatz</td>
</tr>
<tr>
<td>- Entropie als Zustandssgröße</td>
</tr>
<tr>
<td>Wärmeübertragung</td>
</tr>
<tr>
<td>- Konduktion, Konvektion, Strahlung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fluidmechanik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenschaften von Fluiden</td>
</tr>
<tr>
<td>- Molekularer Aufbau</td>
</tr>
<tr>
<td>- Widerstand gegen Formänderungen</td>
</tr>
<tr>
<td>Hydro- und Aerostatik</td>
</tr>
<tr>
<td>- Flüssigkeitsdruck</td>
</tr>
<tr>
<td>- Hydrostatischer Auftrieb</td>
</tr>
<tr>
<td>Hydrodynamik</td>
</tr>
<tr>
<td>- Stromfadentheorie</td>
</tr>
<tr>
<td>- Impulssatz</td>
</tr>
</tbody>
</table>

Workload

| Workload: 180 Stunden (6 Credits x 30 Stunden) |
| Präsentzstudium: 60 Stunden (4 SWS x 15 Wochen) |
| Eigenstudium: 120 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |

Voraussetzung für die Vergabe von Credits

| Bestandene Modulklausur |

Stellenwert Modulnote für Endnote

| Gewichtung 6 |

Geplante Gruppengröße

| ca. 70 Studierende |
MEC3030 – Maschinenbau 4

<table>
<thead>
<tr>
<th>Literatur</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zierep, Bühler; Grundzüge der Strömungslehre: Grundlagen, Statik und Dynamik der Fluide, 7. Auflage 2008, Springer-Verlag</td>
<td></td>
</tr>
<tr>
<td>Spurk, Joseph; Strömungslehre, Einführung in die Theorie der Strömungen, 6. Auflage, Springer-Verlag</td>
<td></td>
</tr>
<tr>
<td>Langeheinecke, Jany: Thermodynamik für Ingenieure, 8. Auflage, Vieweg+Teubner</td>
<td></td>
</tr>
</tbody>
</table>

| Letzte Änderung | 01.04.2013 |
ISSN3040 – Fachübergreifende Qualifikation 1

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>ISSN3040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Thomas Greiner</td>
</tr>
<tr>
<td>Level</td>
<td>Berufsqualifizierendes akademisches Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>7 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Vorlesungen: jeweils 2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLH/PLK/PLM/PLP/PLR/PLS, zwei Klausuren mit jeweils 45 Minuten und eine Klausur mit 60 Minuten</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Teilnahmevoraussetzungen | Formale Voraussetzungen: Bestehen des 1. Studienabschnitts
Inhaltliche Voraussetzungen: Kenntnisse aus den Modulen des ersten Studienabschnitts |
| zugehörige Lehrveranstaltungen | BAE1013 Betriebswirtschaftslehre
LAW4041 Recht
MEC3035 Produktentwicklung |
| Dozenten/Dozentinnen | Prof. Dr. Stefan Haugrund (Betriebswirtschaftslehre)
Prof. Dr. jur. Ralph Schmitt (Recht)
Prof. Dr.-Ing. Mike Barth (Produktentwicklung) |
| Lehrformen der Lehrveranstaltungen des Moduls | Vorlesungen |
| Ziele | Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden erwerben eine ganzheitliche Sichtweise auf ein erwerbswirtschaftlich geführtes Unternehmen. Sie können Folgen betriebswirtschaftlicher und rechtlicher Entscheidungen auf die Unternehmensergebnisse abschätzen und erwerben Fähigkeiten zur zielorientierten Führung eines Unternehmens im Team.
Lernziele:
Betriebswirtschaftslehre: Die Studierenden
• verstehen grundlegende betriebswirtschaftliche Zusammenhänge, wichtige Zielsetzungen eines Unternehmens und die wesentlichen Schritte zu ihrer Verfolgung,
• kennen den grundlegenden Aufbau eines Unternehmens und die Zusammenhänge zwischen den Unternehmensteilen, |
ISS3040 – Fachübergreifende Qualifikation 1

- verfügen über ein grundlegendes Verständnis der Aufgaben und wirtschaftlichen Fragestellungen in den einzelnen Betriebsfunktionen und
- verstehen es, Wirkungen grundlegender operativer unternehmerischer Entscheidungen auf die Ergebnisse des Unternehmens und sein gesellschaftliches Umfeld abzuschätzen.

Recht: Die Studierenden
- können die vielfältigen Rechtsprobleme der betrieblichen Praxis erkennen und entscheiden, ob sie diese Rechtsfragen selbst behandeln können oder einem Wirtschaftsjuristen vorlegen müssen,
- haben sich Grundkenntnisse im geltenden deutschen Recht angeeignet und
- beherrschen die spezielle Arbeits- und Denkmethode.

Produkttentwicklung: Die Studierenden
- verstehen grundlegende Zusammenhänge moderne Produktentwicklungsprozesse sowie deren beteiligter Unternehmen, Kunden und Drittparteien,
- haben Grundkenntnisse zu den Phasen der Produktentwicklung
- beherrschen grundlegende Methoden zur Anforderungsanalyse, Funktionsanalyse und Funktionskostenanalyse
- beherrschen intuitive und diskursive Kreativitätsmethoden
- beherrschen Vorgehensweisen zur Produktstrukturierung

Inhalte

Vorlesung Betriebswirtschaftslehre:
- der Betrieb als Wertschöpfungskette
- Betriebstypen, insb. Rechtsformen
- Grundlagen des Marketing und der Absatzwirtschaft
- Einsatz betrieblicher Produktionsfaktoren (insb. Arbeit, Betriebsmittel)
- Management-Prozess (insb. Zielsetzung, Planung, Organisation)
- Grundlagen der Rechnungslegung
- Grundlagen der Kostenrechnung

Vorlesung Recht:
- Überblick über das deutsche Rechtssystem
- BGB
- Handels- und Gesellschaftsrecht
- Vertragsarten, Vertragsschluss, Abwicklung von Verträgen
- Produkthaftung
ISS3040 – Fachübergreifende Qualifikation 1

<table>
<thead>
<tr>
<th>Produktentwicklung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundlagen zur Produktentwicklung 1</td>
<td></td>
</tr>
<tr>
<td>- Produktmerkmale</td>
<td></td>
</tr>
<tr>
<td>- Spannungsfelder der Produktentwicklung</td>
<td></td>
</tr>
<tr>
<td>- Aktive und passive Vorgehensweisen</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen zur Produktentwicklung 2</td>
<td></td>
</tr>
<tr>
<td>- Wettbewerbsstrategie</td>
<td></td>
</tr>
<tr>
<td>- Prozessdefinition</td>
<td></td>
</tr>
<tr>
<td>- Unternehmensportfolio</td>
<td></td>
</tr>
<tr>
<td>- Entwicklungsprozesse</td>
<td></td>
</tr>
<tr>
<td>• Produktdefinition</td>
<td></td>
</tr>
<tr>
<td>- Marktforschung</td>
<td></td>
</tr>
<tr>
<td>- Benchmarking</td>
<td></td>
</tr>
<tr>
<td>- Anforderungsklassifizierung, -Bewertung und – Dokumentation</td>
<td></td>
</tr>
<tr>
<td>• Produktkonzeption 1</td>
<td></td>
</tr>
<tr>
<td>- Funktionale Beschreibung</td>
<td></td>
</tr>
<tr>
<td>- Zielkosten</td>
<td></td>
</tr>
<tr>
<td>- Wirtschaftlichkeitsberechnung</td>
<td></td>
</tr>
<tr>
<td>• Produktkonzeption 2</td>
<td></td>
</tr>
<tr>
<td>- Kreativitätsmethoden</td>
<td></td>
</tr>
<tr>
<td>• Produktgestaltung</td>
<td></td>
</tr>
<tr>
<td>- Produktstrukturierung</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen der Virtuellen Produktentwicklung</td>
<td></td>
</tr>
</tbody>
</table>

Workload

| Workload: 210 Stunden (7 Credits x 30 Stunden) |
| Präsenzstudium: 90 Stunden (6 SWS x 15 Wochen) |
| Eigenstudium: 120 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |

Voraussetzung für die Vergabe von Credits

Bestandene Klausuren.

Stellenwert Modulnote für Endnote

Gewichtung 7

Geplante Gruppengröße

cia. 70 Studierende

Literatur

- Bürgerliches Gesetzbuch (neueste Auflage, z.B. im dtv-Verlag, darin ist auch das PHG), Handelsgesetzbuch
<table>
<thead>
<tr>
<th>ISS3040 – Fachübergreifende Qualifikation 1</th>
</tr>
</thead>
</table>

Betriebswirtschaftslehre:
| • Luger, Adolf E.: Allgemeine Betriebswirtschaftslehre, Band 1: Der Aufbau des Betriebes. Hanser Verlag München, 5. Aufl. 2004 |
| • Schierenbeck, Henner: Grundzüge der Betriebswirtschaftslehre, Oldenburg Verlag München, 17. Aufl. 2008 |
| • Wöhe, Günter.: Einführung in die allgemeine Betriebswirtschaftslehre, Vahlen Verlag München, 24. Aufl. 2010 |

Produktentwicklung:
| • Skripte des Moduls |

Letzte Änderung 10.05.2013
MEC3400 – Vertiefungsmodul

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>MEC3400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Mike Barth</td>
</tr>
<tr>
<td>Level</td>
<td>Berufsvollziehendes akademisches Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>18 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>12 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsmethoden</td>
<td>PLH/PLK/PLM/PLP/PLR/PLS</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Teilnahmevoraussetzungen | Formale Voraussetzungen: Bestehen des 1. Studienabschnitts
Inhaltliche Voraussetzungen: Kenntnisse aus den Modulen des ersten Studienabschnitts. |
| Lehrformen der Lehrveranstaltungen des Moduls | Vorlesungen, Labore |
| Ziele | Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
| Workload | **Workload**: 360 Stunden (12 Credits x 30 Stunden)
Präsenzstudium: 120 Stunden (8 SWS x 15 Wochen)
Eigentheorie: 240 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |
| Voraussetzung für die Vergabe von Credits | Bestehen der jeweiligen Anforderungen des Vertiefungsmoduls. |
| Stellenwert Modulnote für Endnote | Gewichtung 18 |
| Geplante Gruppengröße | Vorlesungen: ca. 70 Studierende
Labore: ca. 20 Studierende |
| Letzte Änderung | 01.10.2013 |
Im Folgenden werden im Studiengang mögliche Vertiefungsmodule dargestellt (Stand: Wintersemester 2013/14):

<table>
<thead>
<tr>
<th>Automatisierungstechnik-Robotik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>Dauer der Vorlesung</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
</tbody>
</table>
| Teilnahmevoraussetzungen | Formale Voraussetzungen: keine
Inhaltliche Voraussetzungen: Kenntnisse aus den Modulen Automatisierungstechnik 1 und 2, Maschinenbau |
| Dozenten/Dozentinnen | Prof. Dr. habil. Oliver Zirn |
| Lehrformen der Lehrveranstaltungen des Moduls | Vorlesung |
| Ziele | Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden erlernen die Modellierung und Auslegung von Servoantrieben (Gelenkantriebe) sowie deren Zusammenwirken als serielle und parallele kinematische Ketten zu beschreiben.
Sie können die Modelle mittels MATLAB/Simulink simulieren und Bewegungsabläufe an Werkzeugmaschinen und Roboter voraussagen. |
| Inhalte | Modellbildungsniveau 1 - Gelenkantriebe:
• Servomotoren
• Bewegungswandler und Antriebsketten
• Reglereinstellung
• Führungsverhalten
• Störverhalten
• Führungsgrößengenerierung
• CNC und RNC
Modellbildungsniveau 2 - Robotermodule
• Roboterkinematik und Transformation
• Geschwindigkeiten, Kräfte und Jacobi-Matrix
• Roboterdyanamik und Robotermödel |
| Verwendbarkeit des Moduls in anderen Studiengängen | Das Modul ist verwendbar im Studiengang:
• Bachelor Elektrotechnik/Informationstechnik |
Automatisierungstechnik-Robotik

- Bachelor MB/Produktentwicklung
- Bachelor MB/Produktionstechnik und -management

Workload

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload:</td>
<td>90 Stunden (3 Credits x 30 Stunden)</td>
</tr>
<tr>
<td>Präsenzstudium:</td>
<td>30 Stunden (2 SWS x 15 Wochen)</td>
</tr>
<tr>
<td>Eigenstudium:</td>
<td>60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
</tbody>
</table>

Voraussetzung für die Vergabe von Credits

Erfolgreiche Absolvierung der Prüfung.

Stellenwert Modulnote für Endnote

Gewichtung 3

Geplante Gruppengröße

ca. 15 - 25 Studierende

Literatur

- Skripte und Anleitungen des Moduls

Letzte Änderung

01.12.2013
<table>
<thead>
<tr>
<th>Chemische Sensoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
</tbody>
</table>
| **Teilnahmevoraussetzungen** | Formale Voraussetzungen: Bestehen des 1. Studienabschnitts
Inhaltliche Voraussetzungen: Grundlagen der Elektrotechnik |
| **Dozenten/Dozentinnen** | Lehrbeauftragter Roman Gruden
Prof. Dr.-Ing. Alexander Hetznecker |
| **Lehrformen der Lehrveranstaltungen des Moduls** | Vorlesung und Seminar |
| **Ziele** | Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden erhalten eine Einführung in die Grundlagen der chemischen Sensorik.
Aufbauend auf diesen Grundlagen soll in Kleingruppen ein wissenschaftliches Thema im Bereich der chemischen Sensorik bearbeitet, präsentiert und diskutiert werden. |
| **Lernziele:** | Die Studierenden
- verstehen Grundlagen der chemischen Sensorik,
- recherchieren Literatur,
- lernen ein wissenschaftliches Thema selbstständig zu bearbeiten und
- präsentieren die Ergebnisse. |
| **Inhalte** |
- Grundlagen der Elektrochemie
 - Redox-Potential
 - Nernst-Gleichung
 - Elektrochemische Spannungsreihe
- Grundlagen der chemischen Sensorik
 - Aufbau einer elektrochemischen Zelle
 - Elektrodenkonfigurationen
- Überblick chemische Sensoren
- Einblick in die Gassensoren |
Chemische Sensoren

Verwendbarkeit des Moduls in anderen Studiengängen	Das Modul ist verwendbar im Studiengang:
	• Bachelor Elektrotechnik/Informationstechnik
	• Bachelor Medizintechnik

Workload	**Workload:** 90 Stunden (3 Credits x 30 Stunden)
	Präsenzstudium: 60 Stunden (2 SWS x 15 Wochen)
	Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)

| Voraussetzung für die Vergabe von Credits | Erfolgreiche Absolvierung der Abschlussarbeit, sowie des Seminarvortrags. |

| Stellenwert Modulnote für Endnote | Gewichtung 3 |

| Geplante Gruppengröße | ca. 20-40 Studierende |

| Literatur |
|-----------|-----------------------

<p>| Letzte Änderung | 23.01.2014 |</p>
<table>
<thead>
<tr>
<th>C++ Programmierung mit der Standard Template Library (STL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsduer</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
</tbody>
</table>
| **Teilnahmevoraussetzungen** | Formale Voraussetzungen:
• Bestehen des 1. Studienabschnitts
Inhaltliche Voraussetzungen: Fundierte Kenntnisse in
• C, C++
• Grundlagen der Informatik
• Software-Entwicklung
• Objektorientierte Programmierung |
| **Dozenten/Dozentinnen** | Prof. Dr. rer. nat. Peer Johannsen |
| **Lehrformen der Lehrveranstaltungen des Moduls** | Vorlesung
Übung
Labor |
| **Ziele** | Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
| **Inhalte** |
• Programmierung mit Templates in C++
• Abstrakte Datentypen
• Generische Algorithmen
• Die C++ Standard Template Library (STL) |
| **Verwendbarkeit des Moduls in anderen Studiengängen** | Das Modul ist verwendbar im Studiengang:
• Bachelor Elektrotechnik/Informationstechnik
• Bachelor Medizintechnik
• Bachelor Technische Informatik |
| **Workload** | Workload: 90 Stunden (3 Credits x 30 Stunden)
Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)
Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |
| **Voraussetzung für die Vergabe von Credits** | Erbringung der Prüfungsleistung, erfolgreiche Absolvierung der praktischen Übungen |
C++ Programmierung mit der Standard Template Library (STL)

<table>
<thead>
<tr>
<th>Stellenwert Modulnote für Endnote</th>
<th>Gewichtung 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geplante Gruppengröße</td>
<td>ca. 16 Studierende</td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
<tr>
<td>• Andrew Koenig, Barbara E. Moo, „Intensivkurs C++, Schneller Einstieg in die Standardbibliothek“, Pearson Studium</td>
<td></td>
</tr>
<tr>
<td>• Andrew Koenig, Barbara E. Moo, „Accelerated C++, Practical Programming by Example“, Addison-Wesley</td>
<td></td>
</tr>
<tr>
<td>• „C++ Templates“, David Vandevoorde, Nicolai M. Josuttis, Addison-Wesley</td>
<td></td>
</tr>
<tr>
<td>• Skripte und Anleitungen des Moduls</td>
<td></td>
</tr>
</tbody>
</table>

Letzte Änderung 05.01.2014
Datenschutz und Datensicherheit

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/Prüfungsdauer</td>
<td>Klausur, 60 Minuten</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>keine formalen Voraussetzungen</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Dipl.-Ing. Matthias Duspiva</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Lernziele:

Die Studierenden

- lernen die Grundprinzipien des Datenschutzes und der datenschutzrelevanten Gesetze kennen,
- lernen die grundlegenden Prinzipien, Protokolle und Standards der Datensicherheit kennen,
- verstehen die Anwendungsmöglichkeiten und Einschränkungen der Algorithmen, Protokolle und Verfahren,
- sind in der Lage, die Risikobewertung und die Auswahl von Sicherheits-Maßnahmen in der Informationstechnik vorzunehmen,
- besitzen Kenntnisse über die gängigsten Sicherheitsprobleme in heutigen IT-Infrastrukturen und deren Ursachen,
- erkennen die Notwendigkeit für den Einsatz von Sicherheitstechnik,
- können die Grenzen der üblicherweise eingesetzten Technologien einschätzen und
- kennen Methoden zur Konstruktion sicherer Systeme.

Inhalte

- Rechtsgrundlagen, Grundsätze und Ziele des Datenschutzes, Rolle und Aufgaben des Datenschutzbeauftrag-
Datenschutz und Datensicherheit

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ten</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>Datenschutz als Prozess</td>
</tr>
<tr>
<td>•</td>
<td>Grundlagen und Prinzipien der Datensicherheit</td>
</tr>
<tr>
<td>•</td>
<td>Bedrohungen und präventive Maßnahmen</td>
</tr>
<tr>
<td>•</td>
<td>BSI-Grundschutzansatz</td>
</tr>
<tr>
<td>•</td>
<td>Einführung in die Kryptographie, symmetrische und asymmetrische Verschlüsselung, Block- und Stromchiffren; Vorstellung typischer Verfahren</td>
</tr>
<tr>
<td>•</td>
<td>Hash-Algorithmen</td>
</tr>
<tr>
<td>•</td>
<td>Schlüsselaustauschverfahren</td>
</tr>
<tr>
<td>•</td>
<td>Digitale Signatur und Zertifikate nach ITU X.509</td>
</tr>
<tr>
<td>•</td>
<td>Sicherheits-Protokolle wie Diffie-Hellman und SSL/TLS</td>
</tr>
<tr>
<td>•</td>
<td>Einführung in die Steganographie</td>
</tr>
<tr>
<td>•</td>
<td>Public Key Infrastrukturen (PKI)</td>
</tr>
<tr>
<td>•</td>
<td>Virtuelle private Netze (VPN) für Unternehmen (RAS, Intranet, Extranet) mit IPSec bzw. TLS</td>
</tr>
<tr>
<td>•</td>
<td>Sicherheitsmaßnahmen in Wireless LAN und Mobilfunk</td>
</tr>
<tr>
<td>•</td>
<td>Netzgrenzenabsicherung mit Firewall (incl. Proxy, DMZ, ALG) und Intrusion Detection</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls in anderen Studiengängen

Das Modul ist verwendbar im Studiengang:
- Bachelor Elektrotechnik/Informationstechnik
- Bachelor MB/Produktentwicklung
- Bachelor MB/Produktionstechnik und -management
- Bachelor Medizintechnik
- Bachelor Technische Informatik
- Bachelor WI/General Management
- Bachelor WI/Global Process Management
- Bachelor WI/International Management

Workload

Workload: 90 Stunden (3 Credits x 30 Stunden)

Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)

Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)

Voraussetzung für die Vergabe von Credits

Bestehen der Klausur

Stellenwert Modulnote für Endnote

Gewichtung 3

Geplante Gruppengröße

ca. 5 bis 60 Studierende

Literatur

- Schäfer, Günther: Netz sicherheit: algorithmische Grundlagen und Protokolle. dpunkt.Verlag
- Stallings, William: Sicherheit im Internet. Addison-Wesley
- Fuhrberg, Kai: Internet-Sicherheit. Hanser
- Eckert, Claudia: IT-Sicherheit. Oldenbourg
- Schneier, Bruce: Angewandte Kryptographie. Addison-
Datenschutz und Datensicherheit

<table>
<thead>
<tr>
<th>Wesley</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmeh, Klaus: Kryptografie und Public-Key-Infrastrukturen im Internet. dpunkt.Verlag</td>
</tr>
<tr>
<td>Bauer, Johannes et al.: OpenVPN. dpunkt-Verlag</td>
</tr>
<tr>
<td>Zwicky, Elizabeth D. et al.: Einrichten von Internet-Firewalls. O'Reilly</td>
</tr>
<tr>
<td>Skript und Online-Literatur des Moduls</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Letzte Änderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.01.2014</td>
</tr>
</tbody>
</table>
Diagnosesysteme

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>5. Semester / 6. Semester / 7. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>Schriftliche Prüfung, 60 Minuten</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Teilnahmevoraussetzungen | Formale Voraussetzungen: Bestehen des 1.Studienabschnitts
 Inhaltliche Voraussetzungen: Grundkenntnisse aus dem Bereich der Regelungs- und Steuerungstechnik sowie der Kraftfahrzeugtechnik. |
| Dozenten/Dozentinnen | Dr. Ralf Wörner |
| Lehrformen der Lehrveranstaltungen des Moduls | Vorlesung & Übungen |

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Lernziele:

Die Studierenden

- lernen das Ausfallverhalten verschalteter mechatronischer Systeme kennen,
- kennen legislative Randbedingungen mit Focus auf der KFZ-Branche,
- verstehen mechatronische Systeme und Wirkketten mit OBD-Relevanz im KFZ,
- lernen anhand von Fallbeispielen aus der KFZ-Technik Diagnosekonzepte kennen und
- sind in der Lage, Diagnosen von mechatronische Systeme für KFZ-Anwendungen zu entwerfen.

Inhalte

- Motivation & Grundlagen zur Eigendiagnose mechatronischer Systeme
- Sensoren & Aktuatoren des Kraftfahrzeug
- Legislative Randbedingungen im Bereich von Automotive-Anwendungen
Diagnosesysteme

| Emissionsverhalten und Abgasnachbehandlung von Kraftfahrzeugen | Diagnosekonzepte zur On-Board-Diagnose | Diagnosekonzepte für Service-Anwendung |

Verwendbarkeit des Moduls in anderen Studiengängen

Das Modul ist verwendbar im Studiengang:
- Bachelor Elektrotechnik/Informationstechnik
- Bachelor Technische Informatik

Workload

Workload: 90 Stunden (3 Credits x 30 Stunden)
Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)
Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)

Voraussetzung für die Vergabe von Credits

Bestehen der Klausur.

Stellenwert Modulnote für Endnote

Gewichtung 3

Geplante Gruppengröße

ca. 15 bis 30 Studierende

Literatur

- Vorlesungsmanuskript Diagnosesysteme

Letzte Änderung

19.01.2014
<table>
<thead>
<tr>
<th>Elektrische Antriebstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>Dauer der Vorlesung</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
</tr>
<tr>
<td>Ziele</td>
</tr>
</tbody>
</table>
| **Inhalte** | Gleichstrommaschine:
| | • M-n-Kennlinie
| | • Bewegungswandler und Antriebsketten
| | • Leistungsfluss, Wirkungsgrad
| | • Lastkennlinien und Arbeitspunkte
| | • dynamisches Antriebsmodell
| | • Simulation in MATLAB/Simulink
| | Synchronmaschine und EC-Motor
| | Asynchronmaschine
| | Reluktanzmotoren
| | Thermisches Modell von Antrieben
| | Servoantriebe
| | Traktionsantriebe |
| **Verwendbarkeit des Moduls in anderen Studiengängen** | Das Modul ist verwendbar im Studiengang:
| | • Bachelor Elektrotechnik/Informationstechnik
| | • Bachelor MB/Produktentwicklung
| | • Bachelor MB/Produktionstechnik und -management
<p>| | • Bachelor Technische Informatik |</p>
<table>
<thead>
<tr>
<th>Elektrische Antriebstechnik</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>Workload: 90 Stunden (3 Credits x 30 Stunden)</td>
</tr>
<tr>
<td></td>
<td>Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
<td>Erfolgreiche Absolvierung der Prüfung.</td>
</tr>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
<td>Gewichtung 3</td>
</tr>
<tr>
<td>Geplante Gruppengröße</td>
<td>ca. 15 - 25 Studierende</td>
</tr>
<tr>
<td></td>
<td>Skripte und Anleitungen des Moduls</td>
</tr>
<tr>
<td>Letzte Änderung</td>
<td>01.12.2013</td>
</tr>
</tbody>
</table>
Elektro-CAE

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Wintersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>Schriftliche Prüfung</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>ECAD Vorlesung und Labor</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Lehrbeauftragter Dipl.-Ing. Freihold Hasselfeld</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung, Labor</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Lernziele:

Die Studierenden
- verstehen, worauf es bei der Auswahl eines ECAD-Systems ankommt und
- erlernen das Arbeiten mit einem objektorientierten System: E3.series

Inhalte

- Objektorientierte ECAD-Systeme
- Zusammenfassung der aktuellen Entwicklung bei ECAD-Systemen
- Elemente eines Schaltplans
- Schaltungsbeispiele aus der Praxis
- Grundlagen der Symbolerstellung
- Objektorientierter Ansatz bei ECAD-Systemen
- Marktübliche ECAD-Systeme
- Laborübungen an einem objektorientierten ECAD-Systemen der neuesten Generation
- Kennenlernen weiterer Planarten (Sichtweise auf die objektorientierten Datenbanken)
- Aspekte der kopplung von CAD-/PPS- und anderen EDV-Systemen im Unternehmen
Elektro-CAE

| **Verwendbarkeit des Moduls in anderen Studiengängen** | Das Modul ist verwendbar im Studiengang:
- Bachelor Elektrotechnik/Informationstechnik
- Bachelor Medizintechnik
- Bachelor Technische Informatik |
| **Workload** | **Workload**: 90 Stunden (3 Credits x 30 Stunden)
Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)
Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |
<p>| Voraussetzung für die Vergabe von Credits | Bestehen der Klausur |
| Stellenwert Modulnote für Endnote | Gewichtung 3 |
| Geplante Gruppengröße | bis ca. 30 Studierende, abhängig von Laborgröße |
| Literatur | • Skripte und Anleitungen des Moduls |
| Letzte Änderung | 20.01.2014 |</p>
<table>
<thead>
<tr>
<th>Elektromobilität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>Dauer der Vorlesung</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
<tr>
<td>Teilnahmeveranlagungen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ziele</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antriebskette in E-Fahrzeugen:</td>
</tr>
<tr>
<td>- Traktionsmotoren</td>
</tr>
<tr>
<td>- Getriebe und Bewegungswandler</td>
</tr>
<tr>
<td>- Fahrzeugkennlinie</td>
</tr>
<tr>
<td>- Energiespeicher (Li-x, NiMH)</td>
</tr>
<tr>
<td>- Range-Extender (BHKW, Fuel Cell)</td>
</tr>
<tr>
<td>- Zugkraftkennlinie und Arbeitspunkte</td>
</tr>
<tr>
<td>- Leistungsfluss und Wirkungsgrad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Längsmodell und Verbrauchsabschätzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Fahrzeugmodell</td>
</tr>
<tr>
<td>- Testzyklen (NEFZ, WLTP)</td>
</tr>
<tr>
<td>- Verbrauch und CO2-Ausstoß</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moderne E-Mobilitätskonzepte</th>
</tr>
</thead>
<tbody>
<tr>
<td>- DB-Flinkster</td>
</tr>
<tr>
<td>- Car2Go</td>
</tr>
</tbody>
</table>
Elektromobilität

| Verwendbarkeit des Moduls in anderen Studiengängen | Das Modul ist verwendbar im Studiengang:
• Bachelor Elektrotechnik/Informationstechnik
• Bachelor MB/Produktentwicklung
• Bachelor MB/Produktionstechnik und -management
• Bachelor Technische Informatik |
|---|---|
| Workload | Workload: 90 Stunden (3 Credits x 30 Stunden)
Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)
Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |
Voraussetzung für die Vergabe von Credits	Erfolgreiche Absolvierung der Prüfung.
Stellenwert Modulnote für Endnote	Gewichtung 3
Geplante Gruppengröße	ca. 15 - 25 Studierende
Literatur	
• Lienkamp, M.: Elektromobilität – Hype oder Revolution?. Springer-Vieweg-VDI-Verlag 2013	
• Skripte und Anleitungen des Moduls	
Letzte Änderung	01.12.2013
Elektronische Displays 1

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab 6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/Prüfungsdauer</td>
<td>Klausur / Projekt; 60 min.</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch oder/und englisch</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen
Formale Voraussetzungen: Bestehen des 1. Studienabschnitts
Die Veranstaltungen „Elektronische Displays 1“ und „Elektronische Displays 2“ sind nicht aufeinander aufbauend und können einzeln sowie in beliebiger Reihenfolge gehört werden.

Dozenten/Dozentinnen
Prof. Dr. Karlheinz Blankenbach

Lehrformen der Lehrveranstaltungen des Moduls
Vorlesung inkl. Übungen (Case Studies) sowie Laborexperimente

Ziele
Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden erhalten Einblick in die Grundbegriffe, Prinzipien und Auslegungskriterien von
- Elektronischen Displays,
- Embedded Systems mit Displays,
- LCDs und
- OLEDs.

Lernziele:

Inhalte
- Was ist ein Display?
- Display-Marktübersicht
- Systemdesign Mikrocontroller – Display
- Low Resolution Displays
- Graphic Displays Systems
- Display Interfaces
- LCDs: Grundlagen, Ansteuerung, Aktiv-Matrix, Backlight
Elektronische Displays 1

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls in anderen Studiengängen</th>
<th>Das Modul ist verwendbar im Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Bachelor Elektrotechnik/Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>• Bachelor Mechatronik (mit Neigung zu ET und IT)</td>
</tr>
<tr>
<td></td>
<td>• Bachelor Technische Informatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
<th>Workload: 90 Stunden (3 Credits x 30 Stunden)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
</tbody>
</table>

| Voraussetzung für die Vergabe von Credits | Bestehen der Klausur. |

| Stellenwert Modulnote für Endnote | Gewichtung 3 |

| Geplante Gruppengröße | ca. 10 und 20 Studierende |

Literatur	• L.W. MacDonald, A.C. Lowe: Display Systems, Wiley, New York
	• J-H Lee, D. N. Liu, S-T Wu, Introduction to Flat Panel Displays, Wiley, New York
	• Skripte und Anleitungen des Moduls zum Download

| Letzte Änderung | 14.01.2014 |
Elektronische Displays 2

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>Ab 6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>Klausur / Projekt; 60 min.</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch oder/und englisch</td>
</tr>
<tr>
<td>Teilnahmeverpflichtungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienabschnitts</td>
</tr>
<tr>
<td></td>
<td>Die Vorlesungen „Elektronische Displays 1“ und „Elektronische Displays 2“ sind nicht aufeinander aufbauend und können einzeln sowie in beliebiger Reihenfolge gehört werden.</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr. Karlheinz Blankenbach</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung inkl. Übungen (Case Studies) sowie Laborexperimente</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Die Studierenden erhalten Einblick in die Grundbegriffe, Prinzipien und Auslegungskriterien von:
- Elektronischen Displays
- Embedded Systems mit Displays
- LCDs und
- Optischen Display-Parameter und Messtechnik,
- Touch Screens und
- E-Paper-Displays.

Lernziele:

Inhalte

- Was ist ein Display?
- Display-Marktübersicht
Elektronische Displays 2

- Optische Display-Messtechnik:
 - Photometrische Einheiten
 - Leuchtdichte, Kontrast, Graustufen
 - Farbe, Gamut, Color Management
 - Umgebungslicht
 - Lebensdauer
 - LCDs: Schaltzeit, Blickwinkel
- Touch Screens: Grundlagen, Technologien, Messtechnik
- E-Paper: Grundlagen, Technologien, flexible Displays

Verwendbarkeit des Moduls in anderen Studiengängen

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls in anderen Studiengängen</th>
<th>Das Modul ist verwendbar im Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Bachelor Elektrotechnik/Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>• Bachelor Mechatronik (mit Neigung zu ET und IT)</td>
</tr>
<tr>
<td></td>
<td>• Bachelor Technische Informatik</td>
</tr>
</tbody>
</table>

Workload

- **Workload**: 90 Stunden (3 Credits x 30 Stunden)
- **Präsenzstudium**: 30 Stunden (2 SWS x 15 Wochen)
- **Eigenstudium**: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)

Voraussetzung für die Vergabe von Credits

Bestehen der Klausur.

Stellenwert Modulnote für Endnote

Gewichtung 3

Geplante Gruppengröße

c. 10 bis 20 Studierende

Literatur

- Skripte und Anleitungen des Moduls zum Download

Letzte Änderung

14.01.2014
Energieerzeugung der Zukunft – EEZT

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsvollzifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. bzw. 7. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/Prüfungsdauer</td>
<td>PLK/PLM</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienabschnitts</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Michael Felleisen</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Lernziele:

Die Studierenden sollen, ausgehend von ihren Kenntnissen der Vor- und Nachteile sowie die Funktionen unserer heutigen Komponenten zur Energieerzeugung, ein eigenes Bild für die Energieerzeugung von morgen entwickeln können. Ideen der Energieerzeugung von morgen sollen in Diskussionen entstehen.

Inhalte

- Darstellung des Weltenergiebedarfs
- Mobilität & Verkehr, insbesondere Elektromobilität
- Haushalt & Gesundheit – smart home
- Produktion & Fertigung – effiziente, emissionsarme Kraftwerke
- Regenerative Energien & dezentrale Energieerzeugung
- Energiespeicher & Energieverteilungsnetze – smart grid
- Effizienz – Energiesparen mit System
Energieerzeugung der Zukunft – EEZT

| Verwendbarkeit des Moduls in anderen Studiengängen | Das Modul ist verwendbar im Studiengang:
- Bachelor Elektrotechnik/Informationstechnik
- Bachelor MB/Produktentwicklung
- Bachelor MB/Produktionstechnik und -management
- Bachelor Medizintechnik
- Bachelor Technische Informatik
- Bachelor WI/General Management
- Bachelor WI/Global Process Management |
|---|--|
| **Workload** | **Workload**: 90 Stunden (3 Credits x 30 Stunden)
Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)
Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |
| **Voraussetzung für die Vergabe von Credits** | Wann ist das Modul bestanden?
Bestehen der Klausur. |
| **Stellenwert Modulnote für Endnote** | Gewichtung 3 |
| **Geplante Gruppengröße** | ca. 70 Studierende |
Energieerzeugung der Zukunft – EEZT

- Skripte: EEZT_Folienskript_Energieerzeugung, also Download-Datei auf der Homepage des Studienganges

| Letzte Änderung | 05.01.2014 |
Engineering von Automatisierungssystemen

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>5./6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK (60 min), PLM (30 min)</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen
- Formale Voraussetzungen: Bestehen des 1. Studienabschnitts
- Inhaltliche Voraussetzungen: Kenntnisse aus den Vorlesungsveranstaltungen Steuerungstechnik und Regelungstechnik

Dozenten/Dozentinnen
- Prof. Dr.-Ing. Mike Barth

Lehrformen der Lehrveranstaltungen des Moduls
- Vorlesung

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Lernziele:
- Die Studierenden erlernen die Besonderheiten und Unterschiede im Vergleich zur Realisierung von Kleinsteuerungen (vgl. Vorlesung Steuerungstechnik). Dies wird auch als Engineering bezeichnet und beinhaltet die Punkte: Planung, Realisierung, Test und Inbetriebnahme von unikalen Großanlagen. Im Detail erlernen die Studierenden:
 - Die Vorgehensweisen und Methoden für ein Projekt mit großem Umfang (typische Anlagengröße >5000 Sensoren / Aktoren; typische Projektdauer >2 Jahre)...
 - Methoden und Dokumente zur Beherrschung der Kom-
<table>
<thead>
<tr>
<th>Engineering von Automatisierungssystemen</th>
</tr>
</thead>
<tbody>
<tr>
<td>plexität derartiger Projekte (z.B. R&I-Fließbild, Grundfließbild, Verfahrensfließbild, NAMUR Engineering Workflow)</td>
</tr>
<tr>
<td>• Transfer der aus der Steuerungstechnik bekannten IEC 61131-3 Programmierung auf Großanlagen und damit die notwendige Strukturierung in Produkt-, Funktions-, und Ortsaspekt</td>
</tr>
<tr>
<td>• Transfer der in der Regelungstechnik kennengelernten Reglerstrukturen auf Advanced Level. Dies beinhaltet den Einsatz von Modellprädiktiven Reglern.</td>
</tr>
<tr>
<td>• Ausblick und Behandlung der Industrie 4.0 Thematik im Kontext des Engineerings von AT-Systemen.</td>
</tr>
<tr>
<td>• Erlernen grundlegender Leittechnik-Module wie beispielsweise Füllstand-, Temperatur-, Druck- und Durchflussregelung.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Herausarbeiten der Unterschiede und Komplexitätsfaktoren im Vergleich zu Kleinsteuerungsprojekten und Massenprodukten.</td>
</tr>
<tr>
<td>• Verfahrenstechnische Planungsdokumente (z.B. Rohrleitungs- und Instrumentierungsfließbild).</td>
</tr>
<tr>
<td>• Verfahrenstechnische Engineering-Workflows (z.B. NAMUR 35 Workflow).</td>
</tr>
<tr>
<td>• Kennenlernen von Werkzeugen für die Konfiguration von Leitsystemen (ABB, Siemens, etc.)</td>
</tr>
<tr>
<td>• Übungen zur Auswahl von industriellen Sensoren und Kennenlernen der jeweils grundlegenden Prinzipien (z.B. Coriolis, Magnetisch-Induktiv, Seebeck, etc.)</td>
</tr>
<tr>
<td>• Advanced Process Control Verfahren</td>
</tr>
<tr>
<td>• Smith Predictor</td>
</tr>
<tr>
<td>• Gain Scheduling</td>
</tr>
<tr>
<td>• Control Performance Monitoring</td>
</tr>
<tr>
<td>• Kennenlernen von modernen Plant Asset Management Verfahren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls in anderen Studiengängen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul ist verwendbar in den Studiengängen:</td>
</tr>
<tr>
<td>• Bachelor Elektrotechnik/Informationstechnik</td>
</tr>
<tr>
<td>• Bachelor Medizintechnik</td>
</tr>
<tr>
<td>• Bachelor Technische Informatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload: 90 Stunden (3 Credits x 30 Stunden)</td>
</tr>
<tr>
<td>Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)</td>
</tr>
<tr>
<td>Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für die Vergabe von Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Klausur bzw. mündlichen Prüfung</td>
</tr>
</tbody>
</table>
Engineering von Automatisierungssystemen

<table>
<thead>
<tr>
<th>Stellenwert Modulnote für Endnote</th>
<th>Gewichtung 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geplante Gruppengröße</td>
<td>ca. 20 Studierende</td>
</tr>
</tbody>
</table>

Literatur

- Hollender, Martin: Collaborative Process Automation Systems. ISA Verlag, 2009
- Barth, Mike: Skript zur Vorlesung “Engineering von Automatisierungssystemen”.

Letzte Änderung

16.12.2013
Graphical User Interface (GUI) Design

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/Prüfungsdauer</td>
<td>Projekt, Vortrag, Dokumentation</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch oder/ und englisch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienabschnitts</td>
</tr>
<tr>
<td></td>
<td>Inhaltliche Voraussetzungen: Kenntnisse aus den Vorlesungen zu Informatik und Software.</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr. Karlheinz Blankenbach</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Ziele</td>
<td>Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden erhalten Einblick in die Grundbegriffe, Prinzipien und Regeln und Evaluierung von Graphical User Interfaces.</td>
</tr>
<tr>
<td></td>
<td>Ziele:</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden lernen, aufbauend auf Vorlesungen zu Software und Informatik die notwendigen Kenntnisse zur effizienten Umsetzung ergonomie-optimierter GUIs kennen. Mit dem erworbenen Vorlesungsstoff erlangen die Studierenden auf den behandelten Gebieten Problemlösungskompetenz für die Projektierung, Design und Evaluation von GUIs.</td>
</tr>
<tr>
<td>Inhalte</td>
<td>Was ist ein GUI? (Grundlagen)</td>
</tr>
<tr>
<td></td>
<td>GUI Entwurf und Entwicklungsprozess (GUIDE)</td>
</tr>
<tr>
<td></td>
<td>Screen Design</td>
</tr>
<tr>
<td></td>
<td>GUI Evaluierung</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls in anderen Studiengängen</td>
<td>Das Modul ist verwendbar im Studiengang:</td>
</tr>
<tr>
<td></td>
<td>Bachelor Elektrotechnik/Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>Bachelor Mechatronik (mit Neigung zu Software)</td>
</tr>
<tr>
<td></td>
<td>Bachelor Medizintechnik (mit Neigung zu Software)</td>
</tr>
<tr>
<td></td>
<td>Bachelor Technische Informatik</td>
</tr>
<tr>
<td>Workload</td>
<td>Workload: 90 Stunden (3 Credits x 30 Stunden)</td>
</tr>
<tr>
<td></td>
<td>Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)</td>
</tr>
</tbody>
</table>
Graphical User Interface (GUI) Design

<table>
<thead>
<tr>
<th>Eigenstudium</th>
<th>60 Stunden (Vor- und Nachbereitung, Projekt, Vorträge und Dokumentation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
<td>Erfolgreiche Entwicklung eines GUIs mit Vorträgen und Dokumentation.</td>
</tr>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
<td>Gewichtung 3</td>
</tr>
<tr>
<td>Geplante Gruppengröße</td>
<td>ca. 10 bis 30 Studierende</td>
</tr>
</tbody>
</table>
| **Literatur** | • W.O. Galitz: The Essential Guide to User Interface Design, Wiley
• D. Redmond-Pyle, A. Moore: Graphical User Interface Design and Evaluation, Prentice Hall
• M. Silver: Exploring Interface Design, Thomas Delmar
• M. Dahm: Grundlagen der Mensch-Computer-Interaktion, Pearson
• Skripte und Anleitungen des Moduls zum Download |
| **Letzte Änderung** | 14.01.2014 |
Industrielle Bildverarbeitungssysteme

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Wintersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studien-abschnitts</td>
</tr>
<tr>
<td></td>
<td>Inhaltliche Voraussetzungen: Matlab-Kenntnisse, Kenntnisse in Grundlagen der Signalverarbeitung</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Thomas Greiner</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung mit integrierten Übungen</td>
</tr>
</tbody>
</table>

Ziele

Die Studierenden

- kennen und verstehen die theoretischen Grundlagen der zweidimensionalen Signalverarbeitung,
- kennen und verstehen typische Anwendungsfälle der industriellen Bildverarbeitung,
- können typische Aufgabenstellung aus der Bildverarbeitung selbständig lösen,
- können unterschiedliche Lösungsansätze erarbeiten und bewerten und
- kennen und verstehen die Grundlagen der Kamera- und Beleuchtungstechnik.

Inhalte

- Digitale Bildverarbeitung und deren industrielle Anwendung
- Theorie 2-dimensionaler Signale und Systeme
- Grundlagen der Bildverarbeitung
- Verarbeitungskette von Bildsignalen: Bildaufnahme, Bildvorverarbeitung und Bildverbesserung, Merkmalsgewinnung, Segmentierung und Klassifikation
- Beleuchtungs- und Kameratechnik

Verwendbarkeit des Moduls in anderen Studiengängen

Das Modul ist verwendbar im Studiengang:

- Bachelor Elektrotechnik/Informationstechnik
- Bachelor Technische Informatik

Workload

Workload: 90 Stunden (3 Credits x 30 Stunden)

Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)

Eigenstudium: 60 Stunden (Vor- und Nachbereitung der
<table>
<thead>
<tr>
<th>Industrielle Bildverarbeitungssysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für die Vergabe von Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellenwert Modulnote für Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca. 15 Studierende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Schröder, Technische Optik, Vogel Verlag</td>
</tr>
<tr>
<td>• Zamperoni, Methoden der Digitalen Bildsignalverarbeitung, Vieweg Verlag</td>
</tr>
<tr>
<td>• Wahl, Digitale Bildsignalverarbeitung, Springer Verlag</td>
</tr>
<tr>
<td>• Besslich, Liu, Diskrete Orthogonaltransformationen, Springer</td>
</tr>
<tr>
<td>• Abmayr, Einführung in die digitale Bildverarbeitung, Teubner Verlag</td>
</tr>
<tr>
<td>• Ahlers, Warnecke Industrielle Bildverarbeitung, Addison-Wesley</td>
</tr>
<tr>
<td>• Jähne, Digitale Bildverarbeitung, Springer Verlag</td>
</tr>
<tr>
<td>• Skript zur Lehrveranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Letzte Änderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.01.2014</td>
</tr>
</tbody>
</table>
Introduction to Robot Programming

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>6 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>4 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart & Prüfungsdauer</td>
<td>PLH / PLK / PLM / PLP / PLR / PLS</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>englisch</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen
- **Formale Voraussetzungen:**
 - Bestehen des 1. Studienabschnitts
- **Inhaltliche Voraussetzungen:** Fundierte Kenntnisse in
 - Grundlagen der Informatik
 - Software-Entwicklung
 - Programmiersprachen (z.B. C, C++, Python)
 - Objektorientierte Programmierung
 - Englisch

Dozenten/Dozentinnen
- Prof. Dr. Peer Johannsen

Lehrformen der Lehrveranstaltungen des Moduls
- Vorlesung
- Übung
- Labor

Ziele
- The purpose of this course is to give an introduction to the basics of modeling, programming and controlling of robot systems. The course is presented in a format of lectures with integrated practical lab sessions. A small autonomous robot will be programmed as group exercise during the lecture sessions, illustrating the algorithmic principles which are presented.

Inhalte
- **Autonomous Robots**
- **Microcontrollers**
- **Embedded Systems**
- **Algorithms**
- **Finite State Machines**
- **C, C++, Python**
- **Multitasking**
- **Sensors, Actuators**

Verwendbarkeit des Moduls in anderen Studiengängen
- Das Modul ist verwendbar im Studiengang:
 - Bachelor Elektrotechnik/Informationstechnik
 - Bachelor Medizintechnik
 - Bachelor Technische Informatik
<table>
<thead>
<tr>
<th>Introduction to Robot Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
</tr>
<tr>
<td>Workload: 180 Stunden (6 Credits x 30 Stunden)</td>
</tr>
<tr>
<td>Präsenzstudium: 60 Stunden (4 SWS x 15 Wochen)</td>
</tr>
<tr>
<td>Eigenstudium: 120 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
</tr>
<tr>
<td>Erbringung der Prüfungsleistung, erfolgreiche Absolvierung der praktischen Übungen</td>
</tr>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
</tr>
<tr>
<td>Gewichtung 6</td>
</tr>
<tr>
<td>Geplante Gruppengröße</td>
</tr>
<tr>
<td>16 Studierende (limitierte Teilnehmerzahl)</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>• "An Introduction to Robotics with NAO", Mike Biter</td>
</tr>
<tr>
<td>• "Dive into Python 3", M. Pilgrim, APress</td>
</tr>
<tr>
<td>• "Python 3 Intensivkurs", German, F. Sonnenschein, Springer E-Book, free download at HSPF library</td>
</tr>
<tr>
<td>• "Praktische Algorithmik mit Python", German, T. Häberlein, Oldenbourg Verlag</td>
</tr>
<tr>
<td>• "Python", RRZN Course Material, German, available for 4 EUR at HSPF library</td>
</tr>
<tr>
<td>• "Python - Einführung in die Programmierung", German, Lecture Slides, RRZN Hannover</td>
</tr>
<tr>
<td>• Skripte und Anleitungen des Moduls</td>
</tr>
<tr>
<td>Letzte Änderung</td>
</tr>
<tr>
<td>05.01.2014</td>
</tr>
<tr>
<td>Maschinendynamik</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td>Prüfungsart/Prüfungsdauer</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

In der Modulveranstaltung Maschinendynamik werden die in den ersten Studienabschnitten eingeführten Methoden erweitert und auf die wichtigsten Maschinentypen als Vorbereitung auf das Syntheseproblem des mechatronischen Entwurfs angewendet. Die Studenten sind anschließend in der Lage, Aufgabenstellung aus dem Bereich der Maschinendynamik selbstständig und ingenieurmäßig zu bearbeiten.

Lernziele:

Die Studierenden sind in der Lage, typische Phänomene der Maschinendynamik zu unterscheiden und bei konkreten Problemstellungen an einem realen Objekt zu erkennen. Weiterhin können die Studenten das dynamische Verhalten realer Systeme richtig einschätzen und entsprechende Maßnahmen ableiten, um das geforderte Systemverhalten zu erreichen.

Inhalte

Inhalte:

- Maschine als mechatronisches System
- Ausgewählte Probleme aus der Rotordynamik:
 - Starre und elastische Rotoren
 - Stationärer Betrieb, An- und Auslauf
 - Kritische Drehzahlen
 - Auswuchten
<table>
<thead>
<tr>
<th>Maschinendynamik</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hubkolbenmaschinen</td>
</tr>
<tr>
<td>- Stationärer Betrieb, An- und Auslauf</td>
</tr>
<tr>
<td>- Massenausgleich / Leistungsausgleich</td>
</tr>
<tr>
<td>- Schaufelschwingungen (Biegeschwingungen)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls in anderen Studiengängen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul ist verwendbar im Studiengang:</td>
</tr>
<tr>
<td>- Bachelor Elektrotechnik/Informationstechnik</td>
</tr>
<tr>
<td>- Bachelor MB/Produktentwicklung</td>
</tr>
<tr>
<td>- Bachelor MB/Produktionstechnik und -management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload: 60 Stunden (3 Credits x 30 Stunden)</td>
</tr>
<tr>
<td>Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)</td>
</tr>
<tr>
<td>Eigenstudium: 30 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für die Vergabe von Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenn alle Prüfungsleistungen des Moduls erfolgreich absolviert wurden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellenwert Modulnote für Endnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterstärke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Gasch, Nordmann, Pfützer: Rotordynamik, Springer-Verlag, 2 Auflage, 2005</td>
</tr>
<tr>
<td>- Hibbeler: Technische Mechanik 3 - Dynamik, Pearson-Verlag, 10. Auflage, 2004</td>
</tr>
<tr>
<td>- Skripte und Anleitungen des Moduls</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Letzte Änderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.12.2013</td>
</tr>
<tr>
<td>Modulfunk</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
</tbody>
</table>
| Teilnahmevoraussetzungen | Formale Voraussetzungen: Bestehen des 1. Studienabschnitts
Inhaltliche Voraussetzungen: Kenntnisse aus der Vorlesung Kommunikationsprotokolle |
| Dozenten/Dozentinnen | Prof. Dr.-Ing. Frank Niemann |
| Lehrformen der Lehrveranstaltungen des Moduls | Vorlesung |

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden kennen die wesentlichen Prinzipien zur Mobilitätsverwaltung und können Mobilfunksysteme weiterentwickeln und optimieren.

Lernziele:

Die Studierenden kennen die Grundbegriffe der Mobilkommunikation. Sie verstehen die Prinzipien zur Mobilitätsverwaltung und können den Verbindungsauf- und -abbau in Mobilfunknetzen erklären.
Die auf der Luftschnittstelle auftretenden physikalischen Phänomene und deren Wirkung auf die Datenübertragung können die Studierenden einordnen.
Die Studierenden kennen den Systemaufbau eines GSM-Netzes und können hieraus auch Architekturen modernerer Mobilfunknetze verstehen und weiterentwickeln. Sie kennen die wesentlichen IEEE 802.11 Standards.

Inhalte

- Grundbegriffe
- Prinzipien der Mobilitätsverwaltung
- Überblick Evolution Mobilfunksysteme
- Luftschnittstelle
- GSM
- WLAN

Verwendbarkeit des Moduls in anderen Studiengängen

Das Modul ist verwendbar im Studiengang:
- Bachelor Elektrotechnik/Informationstechnik
Mobilfunk

| Workload | Workload: 90 Stunden (3 Credits x 30 Stunden)
| | Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)
	Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)
Voraussetzung für die Vergabe von Credits	Bestandene Prüfung
Stellenwert Modulnote für Endnote	Gewichtung 3
Geplante Gruppengröße	ca. 15 Studierende
	• Skript
Letzte Änderung	01.10.2013
Numerik-Algorithmen

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab 6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>bei Bedarf</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK 45 Minuten / PLM</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Rainer Dietz</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden verstehen Methoden, die in der Praxis zur numerischen Lösung von komplexen mathematischen Problembeschreibungen angewandt werden.

Lernziele:
- Die Studierende verstehen komplexe mathematische Problemformulierungen mit partiellen Differentialgleichungen und können diese auf verschiedene Anwendungsfälle transferieren.
- Die Studierenden verstehen die Grundlagen eines Computerprogramms zur effektiven Lösung von sehr großen Gleichungssystemen.
- Die Studierenden verstehen die Methode der finiten Differenzen und können ihre Möglichkeiten und Grenzen einordnen.
- Die Studierenden lernen die Methode der finiten Elemente kennen.
- Die Studierenden können die erlerneten Methoden für verschiedene Problemstellungen beurteilen und anwenden.

Inhalte

- Grundlagen für die Lösung linearer Gleichungssysteme
- Iterative Lösungsverfahren
- Relaxationsverfahren
- Herleitung der Finiten Differenzen Methode
- Berücksichtigung von Randbedingungen
Numerik-Algorithmen

- Anwendung an Beispielen der Feldberechnung
- Basisfunktionen für die Finite Element Methode
- Prinzip der gewichteten Residuen und Wahl der Gewichtsfunktionen
- Rechteckige und dreieckige Elemente
- Berechnungsbeispiele

Verwendbarkeit des Moduls in anderen Studiengängen
Das Modul ist verwendbar im Studiengang:
- Bachelor Elektrotechnik/Informationstechnik
- Bachelor Technische Informatik

Workload

<table>
<thead>
<tr>
<th>Präsenzstudium:</th>
<th>30 Stunden (2 SWS x 15 Wochen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenstudium:</td>
<td>60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen und Implementierung von Übungsbeispielen, Vorbereitung und Durchführung der Prüfung)</td>
</tr>
</tbody>
</table>

Stellenwert Modulnote für Endnote
Gewichtung 3

Geplante Gruppengröße
ca. 10 Studierende

Literatur

- Faires, Burden: „Numerische Methoden“, (1994), Spektrum Akademischer Verlag GmbH, Heidelberg
- van Kan, Segal: „Numerik partieller Differentialgleichungen für Ingenieure“, (1995), Teubner Verlag Stuttgart
- Skripte und Anleitungen der Lehrveranstaltung

Letzte Änderung
08.01.2014
<table>
<thead>
<tr>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:</td>
</tr>
<tr>
<td>• Die Studierenden erhalten Einblick in die wesentlichen Themenbereiche der Prozessleittechnik für verfahrenstechnische Anlagen in der Prozessindustrie und der Fertigungstechnik.</td>
</tr>
<tr>
<td>• Grundbegriffe, Prinzipien und Funktionsweisen der Automatisierungstechnik stehen im Vordergrund.</td>
</tr>
<tr>
<td>• Anhand des Beispiels einer verfahrenstechnischen Anlage lernen die Studierenden Fließbilder zur Darstellung von Prozessen, wie das R&I-Fließbild, sowie Detailwissen zu PLT-Kennbuchstaben nach DIN 19227 anhand der Durchfluss-Regelung kennen.</td>
</tr>
<tr>
<td>• Anhand von Beschreibungen zu Prozessensorsystemen, von der Füllstands- bis zur Druckerfassung an einer Kolonne, sollen Gerätekombinationen zum Regeln von Drücken, Füllständen, Durchflüssen und Mengen erlernt werden.</td>
</tr>
<tr>
<td>• Aussagen zur Projektierung der Bedien- und Beobachtung mittels Operator Station sowie Erläuterungen zur „Totally Integrated Automation“ führen auf den Einsatz SPS-basierter Prozessleitsysteme.</td>
</tr>
<tr>
<td>• Komponenten eines modernen Engineering-Tools wie CFC, SFC sowie die Visualisierung mittels WinCC sollen</td>
</tr>
</tbody>
</table>
Prozessleittechnik – PFTT

die Kenntnisse im Umgang mit Prozessleitsystemen komplettieren.

- Vergleiche zwischen zentraler und dezentraler Struktur, konventionelle Verkabelung und Feldbusstechnik sowie Aussagen zu Feldgeräten bis hin zur Funktion digitaler Datenübertragung sollen in die Funktionen industrieller Kommunikationstechnik einführen.

Lernziele:

Inhalte

- Auf die historische Entwicklung aufbauend wird die Beziehung zwischen der Verfahrens- und Prozessleittechnik aufgezeigt. Aufgaben der Prozessleittechnik führen zur Informationsstruktur in der Leittechnik.
- Prozessbeispiele, Anlagen und Apparate in der Prozessindustrie sowie typische Messungen und Regelkreise zeigen den Einstieg in die Denkwelt technischer Prozesse.
- Um den Bogen vom Prozesswissen zur Prozessführung zu schlagen, wird das Beispiel einer verfahrenstechnischen Anlage detailliert behandelt. Fließbilder zur Darstellung des Prozesses wie das R & I-Fließbild, Detailwissen zur Funktion eines Röhrenkontaktofens bis hin zur Regelung einer Destillationskolonne geben Auskunft über Wissen zum Prozess.
- Über PLT-Kennbuchstaben nach DIN 19227 wird die Durchfluss-Regelung detailliert erläutert.
- Das Phasenmodell der Produktion führt in die Beschreibung von Planungsunterlagen zur Basis- und Detailplanung ein.
- Erläuterungen zu Kompaktreglern sowie der Aufbau eines Regelungssystems mit SPS’ en ergänzen Aussagen zu
Prozessleittechnik – PFTT

Prozessaktorsystemen, die Betrachtung von Stellantrieben, Stellgliedern und Stellungsreglern.

- Da Speicherprogrammierbare Steuerungen in der Prozessautomatisierung seit Jahren eine zentrale Rolle spielen werden Eigenschaften und Merkmale, Grundlagen zur Anwendung sowie der Aufbau einer Regelung mit SPS anhand notwendiger Hardware aufgezeigt.
- Neben Hardware-Komponenten werden Aussagen zur Software wie Sprachen (KOP, FUP, AWL, ST, GRAPH 7), Verknüpfungs- und Ablaufsteuerung bis hin zur Arbeitsweise einer SPS und das Programmieren eines Anwenderprogramms aufgezeigt.
- Anforderungen der Dezentralisierung werden an der Hardwarekonfiguration eines SPS-basierenden PLS für eine Kläranlagenautomatisierung aufgezeigt. SIMATIC PCS7-Engineering-Tools wie CFC, SFC sowie die Visualisierung mittels WinCC spannen den Bogen in die heutige Zeit.

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls in anderen Studiengängen</th>
<th>Das Modul ist verwendbar im Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Elektrotechnik/Informationstechnik</td>
<td></td>
</tr>
<tr>
<td>Bachelor MB/Produktentwicklung</td>
<td></td>
</tr>
<tr>
<td>Bachelor MB/Produktionstechnik und -management</td>
<td></td>
</tr>
<tr>
<td>Bachelor Medizintechnik</td>
<td></td>
</tr>
<tr>
<td>Bachelor Technische Informatik</td>
<td></td>
</tr>
<tr>
<td>Bachelor WI/General Management</td>
<td></td>
</tr>
<tr>
<td>Bachelor WI/Global Process Management</td>
<td></td>
</tr>
<tr>
<td>Prozessleittechnik – PFTT</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td></td>
</tr>
<tr>
<td>Workload: 90 Stunden (3 Credits x 30 Stunden)</td>
<td></td>
</tr>
<tr>
<td>Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)</td>
<td></td>
</tr>
<tr>
<td>Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)</td>
<td></td>
</tr>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
<td></td>
</tr>
<tr>
<td>Bestehen der Klausur.</td>
<td></td>
</tr>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
<td></td>
</tr>
<tr>
<td>Gewichtung 3</td>
<td></td>
</tr>
<tr>
<td>Geplante Gruppengröße</td>
<td></td>
</tr>
<tr>
<td>ca. 70 Studierende</td>
<td></td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
<tr>
<td>Letzte Änderung</td>
<td></td>
</tr>
<tr>
<td>14.01.2014</td>
<td></td>
</tr>
</tbody>
</table>
Softwareentwicklung mit Java

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienabschnitts</td>
</tr>
<tr>
<td></td>
<td>Inhaltliche Voraussetzungen: Kenntnisse der Informatik und der Softwareentwicklung mit einer objektorientierten Programmiersprache</td>
</tr>
</tbody>
</table>

Dozenten/Dozentinnen

Prof. Dr.-Ing. Thomas Greiner

Lehrformen der Lehrveranstaltungen des Moduls

Vorlesung mit integrierten Übungen

Ziele

- Die Studierenden
 - kennen und verstehen die Grundlagen der Softwareentwicklung mit Java,
 - kennenlernen und verstehen typische Aufgabenstellungen,
 - kennenlernen und verstehen die Grundlagen von Multithreading und
 - können unterschiedliche Lösungsansätze erarbeiten und bewerten.

Inhalte

Programmiersprache Java:
- Kontroll- und Datenstrukturen
- Vererbung
- Exceptions
- Threads
- UML

Verwendbarkeit des Moduls in anderen Studiengängen

Das Modul ist verwendbar im Studiengang:
- Bachelor Elektrotechnik/Informationstechnik
- Bachelor Medizintechnik
- Bachelor Technische Informatik

Workload

Workload: 90 Stunden (3 Credits x 30 Stunden)
Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)
Eigentum: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)
<table>
<thead>
<tr>
<th>Softwareentwicklung mit Java</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
</tr>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
</tr>
<tr>
<td>Geplante Gruppengröße</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>• Jobst Fritz: Programmieren in Java, Hanser Verlag</td>
</tr>
<tr>
<td>• Schader Martin, Schmidt-Thieme Lars: Java - Eine Einführung, Springer Verlag</td>
</tr>
<tr>
<td>• Ratz D.: Grundkurs Programmieren in Java, Hanser Verlag</td>
</tr>
<tr>
<td>• Oechsle R.: Parallele Programmierung mit Java Threads, Fachbuchverlag Leipzig</td>
</tr>
<tr>
<td>• Sanchez J.: JAVA Programming for Engineers, CRC-Press</td>
</tr>
<tr>
<td>• Arnold Ken, Gosling James, Holmes David: Die Programmiersprache Java, Verlag Addison-Wesley Deutschland</td>
</tr>
<tr>
<td>• Campione Mary, Walrath Kathy: The Java Tutorial - 3 Bände, Verlag Addison-Wesley</td>
</tr>
<tr>
<td>• Skript zur Lehrveranstaltung</td>
</tr>
<tr>
<td>Letzte Änderung</td>
</tr>
</tbody>
</table>
Umweltverfahrenstechnik – UMTT

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. bzw. 7. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienabschnitts</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Michael Felleisen</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

- Die Studierenden erhalten Einblick in die wesentlichen Themenbereiche unserer heutigen Technologien zum Schutze unserer Umwelt.
- Grundbegriffe, Prinzipien und Funktionsweisen der Umweltverfahrenstechnik stehen im Vordergrund.
- Über die Technologien zur Behandlung fester und flüssiger Abfälle mit verschiedenen Entsorgungsanlagen und -wegen wird eine Situationsbeschreibung der Abfallwirtschaft anhand des Stoffkreislaufs im Ökosystem Erde mit Hilfe von Phasenmodellen aufgezeigt.
- Im Mittelpunkt der Betrachtungen steht die Kompostierung, Vergärung, Biologisch-Mechanische Abfallbehandlung, thermische Verfahren, die Abfalllagerung auf Deponien sowie die Deponiegasverwertung und -sickerwasserbehandlung. Verfahren zur Behandlung flüssiger Abfälle, der Aufbau einer konventionellen Kläranlage, Funktionen zur SBR-Kläranlage sowie zur mechanisch-physikalischen, biologischen und chemisch-physikalischen Abwasserbehandlung runden diese Erläuterungen ab.
- Die Studierenden sollen über die Aufgabenbeschreibung und Erläuterung notwendiger Ziele das Vorgehen zur Umsetzung erforderlicher Maßnahmen über Prozessanalysen der Stoffflüsse zum Anlagenverbund sowie der Prozessanalyse zu Anlagen auf einer Deponie kennen lernen.
<table>
<thead>
<tr>
<th>Umweltverfahrenstechnik – UMTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Eine Prozesssynthese zum integrierten Stoff- und Energieverbund auf einer Deponie soll ihnen Aussagen zu möglichen Energieverbunden auf einer Deponie und Verbundkonzepte für Abfall-Entsorgungszentren aufzeigen.</td>
</tr>
<tr>
<td>• Neben der verfahrenstechnischen Sicht auf die Abfallbehandlung wird in einer ganzheitlichen Sichtweise die zum Betrieb von Abfallbehandlungsanlagen erforderliche Prozessleitechnik für die Deponie, Deponiegasverwertung und Kläranlagen mit aus der Praxis stammenden Lösungskonzepten aufgezeigt.</td>
</tr>
<tr>
<td>• Aussagen zu einer neuartigen Vorgehensweise zur Umsetzung eines ganzheitlichen Prozessleitechnik-Entwurfs schließen dieses Themengebiet ab.</td>
</tr>
</tbody>
</table>

Lernziele:
Die Studierenden sollen, ausgehend von deren Kenntnissen der Vor- und Nachteile sowie die Funktionen unserer heutigen Komponenten in der Umweltverfahrenstechnik, ein eigenes Bild für die erforderlichen Technologien entwickeln können. Ideen der Umweltverfahrenstechnik heute und von morgen sollen in Diskussionen entstehen.

Inhalte

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Die Umweltverfahrenstechnik thematisiert die Behandlung fester und flüssiger Abfälle mit verschiedenen Entsorgungsanlagen und Entsorgungswegen.</td>
</tr>
<tr>
<td>• Nach einer Situationsbeschreibung der Abfallwirtschaft anhand des Stoffkreislaufes im Ökosystem Erde wird die Behandlung fester und gasförmiger Abfälle mit Hilfe von Phasenmodellen aufgezeigt.</td>
</tr>
<tr>
<td>• Die Klassifizierung des Technischen Umweltschutzes, die Aufzählung verfahrenstechnischer Anlagen für die Abfallbehandlung, die geschichtliche Entwicklung und Sichtweisen in der Abfallwirtschaft, Aussagen zum Abfallrecht und rechtliche Grundlagen sowie über die Vergabepraxis bei öffentlichen Auftraggebern und letztlich Aussagen zu Planungsabläufen in der Abfallwirtschaft stimmen in das Themengebiet ein. Aussagen zu Abfallarten und Abfallaufkommen sowie mögliche Einflüsse auf Menge und Zusammensetzung schließen sich an.</td>
</tr>
<tr>
<td>• Sammlung und Transport fester und flüssiger Abfallstoffe, die Organisation und Durchführung bis hin zur Darstellung verschiedenster Abfallbehandlungsverfahren für feste und flüssige Abfallstoffe stehen im Mittelpunkt der Betrachtung. Unterstützt werden diese Aussagen durch Klassenbibliotheken der Entsorgungstechnik, der Abfall-</td>
</tr>
</tbody>
</table>
vermeidung, Abfallverwertung und Abfallbehandlung. In deren Mittelpunkt steht die Kompostierung (aerobe), die Vergärung (anaerob), die Biologisch-Mechanische Abfallbehandlung, thermische Verfahren, die Abfallagerung auf der Deponie sowie die Deponiegasverwertung und Sickerwasserbehandlung. Verfahren zur Behandlung flüssiger Abfälle, der Aufbau einer konventionellen Kläranlage, Funktionen zur SBR-Kläranlage sowie zur mechanisch-physikalischen, biologischen und chemisch-physikalischen Abwasserbehandlung runden diese Erläuterungen ab.

- Erläuterungen zu Verfahren zur Behandlung gasförmiger Abfälle sowie zu Auswahl- und Vergleichskriterien für Abfallbehandlungsverfahren leiten zum Themengebiet des Integrierten Abfallwirtschaftskonzeptes über.
- Über die Aufgabenbeschreibung und Erläuterung notwendiger Ziele wird das Vorgehen zur Umsetzung geforderter Maßnahmen über Prozessanalysen der Stoffflüsse zum Anlagenverbund sowie der Prozessanalyse zu Anlagen auf einer Deponie aufgezeigt. Dies führt schrittweise zum Verbund zwischen Sickerwasserbehandlung, Deponiegasverwertung und Klärschlamm trocknung.
- Eine Prozesssynthese zum integrierten Stoff- und Energieverbund auf einer Deponie erlaubt Aussagen zum Energieverbund dieser Anlagen auf einer Deponie und zeigt mögliche Verbundkonzepte für Abfallentsorgungszentren auf.
- Neben der verfahrenstechnischen Sicht auf die Abfallbehandlung wird aufgrund der zugrundeliegenden ganzheitlichen Sichtweise die zum Betrieb einer Abfallbehandlungsanlage notwendige Prozessleitechnik für die Deponie, Deponiegasverwertung und Kläranlagen mit aus der Praxis stammenden Lösungskonzepten aufgezeigt. Aussagen zu einer neuartigen Vorgehensweise zur Umsetzung eines ganzheitlichen Prozessleitechnik-Entwurfs schließen dieses Themengebiet ab. Durch eine ganzheitliche Sichtweise über Fachgebietsgrenzen der Verfahrens- und Prozessleitechnik hinweg, soll dem Interessenten der Zugang zu vielfältigen, technisch hoch interessanten Möglichkeiten der Abfallbehandlung aufgezeigt werden.

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls in anderen Studiengängen</th>
<th>Das Modul ist verwendbar im Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bachelor Elektrotechnik/Informationstechnik</td>
<td>• Bachelor Elektrotechnik/Informationstechnik</td>
</tr>
<tr>
<td>• Bachelor MB/Produktentwicklung</td>
<td>• Bachelor MB/Produktentwicklung und -management</td>
</tr>
<tr>
<td>• Bachelor MB/Produktionstechnik und -management</td>
<td>• Bachelor Medizintechnik</td>
</tr>
<tr>
<td>• Bachelor Technische Informatik</td>
<td>• Bachelor Technische Informatik</td>
</tr>
</tbody>
</table>
Umweltverfahrenstechnik – UMTT

| Workload | Workload: 90 Stunden (3 Credits x 30 Stunden)
| Präsentstudium: | 30 Stunden (2 SWS x 15 Wochen)
| Eigenstudium: | 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)

| Voraussetzung für die Vergabe von Credits | Bestehen der Klausur.

| Stellenwert Modulnote für Endnote | Gewichtung 3

| Geplante Gruppengröße | ca. 70 Studierende

| Literatur |
| • Skripte: UMTT_Folienskript_Umweltverfahrenstechnik, also Download-Datei auf der Homepage des Studienganges

| Letzte Änderung | 14.01.2014

<table>
<thead>
<tr>
<th>Versuchsplanung und Optimierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
</tbody>
</table>
| **Teilnahmevertragssetzung** | Formale Voraussetzungen: Bestehen des 1. Studienabschnitts
Inhaltliche Voraussetzungen: Messtechnik |
| **Dozenten/Dozentinnen** | Prof. Dr.-Ing. Alexander Hetznecker |
| **Lehrformen der Lehrveranstaltungen des Moduls** | Vorlesung und Seminar |

Ziele

- Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
 - Die Studierenden erhalten eine Einführung in die statistische Versuchsplanung (Design of Experiment, DoE) und lernen dieses Werkzeug selbst anzuwenden und die Ergebnisse zu deuten. Für den Seminarteil wählen sie ein vorgegebenes oder eigenes Thema aus und präsentieren ihre Untersuchungen und Ergebnisse.

Lernziele:

- Die Studierenden
 - verstehen die Systematik der Versuchsplanung,
 - kennen die Arten von Versuchsplänen,
 - wissen die Zuordnung von Einflussgrößen, Störgrößen und Ergebnisgrößen aufzustellen,
 - erlernen die Durchführung von Regressionen mit mehreren Variablen und
 - kennen das Spannungsfeld bei gegenläufigen Optimierungsaufgaben.

Inhalte

- Historie der Versuchsplanung
- Grundlagen der Statistik (Vertrauensbereich, T-Verteilung, F-Verteilung)
- Nachteile der OFAT (One factor of time)-Methode
- Vollfaktorielle Versuchspläne
- Teilverfäktorielle und D-Optimale Versuchspläne
Versuchsplanung und Optimierung

- Wechselwirkungen und höher dimensionale Abhängigkeiten
- Signifikanz, Fehler 1. Art und Fehler 2. Art
- Darstellungsmöglichkeiten
 - Angepasster Messwert (Adjusted Responses Plot)
 - Wahrscheinlichkeit (Probability Plot)
 - Wechselwirkung (Interaction Plot)
 - Vorhersage (Predicted Responses Plot)

Verwendbarkeit des Moduls in anderen Studiengängen

Das Modul ist verwendbar im Studiengang:
- Bachelor Elektrotechnik/Informationstechnik
- Bachelor Medizintechnik
- Bachelor Technische Informatik

Workload

Workload: 90 Stunden (3 Credits x 30 Stunden)
Technische Statistik und Versuchsplanung 2013

Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)

Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung)

Voraussetzung für die Vergabe von Credits

Erfolgreiche Absolvierung der Abschlussarbeit, sowie des Seminarvortrags.

Stellenwert Modulnote für Endnote

Gewichtung 3

Geplante Gruppengröße

ca. 20 bis 30 Studierende

Literatur

- Klein, Bernd „Versuchsplanung DoE“, Oldenbourg Verlag, München, (2007)

Seminarunterlagen:
- Wember, Theo „Technische Statistik und Versuchsplanung 2013"

Letzte Änderung

23.01.2014
Virtual Commissioning / Virtuelle Inbetriebnahme

<table>
<thead>
<tr>
<th>Level</th>
<th>Berufsqualifizierendes akademisches Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK (60 min), PLM (30 min)</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienabschnitts</td>
</tr>
<tr>
<td></td>
<td>Inhaltliche Voraussetzungen: Kenntnisse aus den Vorlesungsveranstaltungen Steuerungstechnik und Regelungstechnik</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr.-Ing. Mike Barth</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Vorlesung</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Lernziele:

Die Studierenden erlernen die Inbetriebnahme von großen komplexen Automatisierungssystemen mithilfe virtueller
Virtual Commissioning / Virtuelle Inbetriebnahme

Techniken (Simulation). Besonderer Wert wird dabei auf die Sicherheitsfunktionen der Steuerung gelegt, da diese bis zu 90% des gesamten Steuerungscode ausmachen. Im Detail erlernen die Studierenden:

- Kennen von Vorgehensweisen und Methoden für die virtuelle Inbetriebnahme (z.B. durchgängiger Einsatz von Modellen im Engineering Workflow).
- Kennen von eingesetzten Werkzeugen für die virtuelle Inbetriebnahme (einfache E/A Simulatoren bis hin zu komplexen Prozesssimulatoren).
- Kennen von Aufbau und Gliederung unterschiedlicher Simulationsmodelle (E/A-Modell, Gerätemodell, Prozessmodell) und Übertragung auf eigene Modelle.
- Kennen der Unterschiede zwischen diskreter und kontinuierlicher Modellierung für die VIBN.
- Fähigkeiten im Umgang mit unterschiedlichen Spezifikationsarten (formal, semi-formal, nicht formal, testgetrieben)
- Fähigkeit zur Entscheidung über passende Modelltypen für den jeweils vorliegenden Einsatztyp.
- Kennen unterschiedliche Testarten und Simulationsarten.

Inhalte

- Aufbau- und Ablaufstrukturen von Simulationsmodellen (Modelica vs. Simulink).
- Voraussetzungen für den effizienten Einsatz der VIBN.
- Aufbau eines E/A-Simulators in MS Excel und Anwendung mit realen IEC 61131-3 Code.
- Erstellen und Auswerten von Spezifikationen für Automatisierungssysteme.
- Einblicke in häufige Fehlerquellen und -Auswirkungen bei der realen Inbetriebnahme.
- OPC-Kommunikation für die Systemsimulation.
- Testen von Feldbusparametern für Profinet und Profibus
- Ausblick auf die Einflüsse von Industrie 4.0 und Cyber Physischen Systemen.
- Versuchsplanung für die Virtuelle Inbetriebnahme.
- Verifikation und Validierung in der Virtuellen Inbetriebnahme.

Verwendbarkeit des Moduls in anderen Studiengängen

Das Modul ist verwendbar in den Studiengängen:

- Bachelor Elektrotechnik/Informationstechnik
- Bachelor Medizintechnik
- Bachelor Technische Informatik
Virtual Commissioning / Virtuelle Inbetriebnahme

| **Workload** | Workload: 90 Stunden (3 Credits x 30 Stunden)
Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)
Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
<td>Bestehen der Klausur bzw. mündlichen Prüfung</td>
</tr>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
<td>Gewichtung 3</td>
</tr>
<tr>
<td>Geplante Gruppengröße</td>
<td>ca. 20 Studierende</td>
</tr>
</tbody>
</table>
| **Literatur** | • Drath, Rainer (Hrsg.): Datenaustausch in der Anlagenplanung mit AutomationML, Integration von CAEX, PCopen XML und Collada. Spinger Verlag, 2010.
• Bretthauer, Georg (Editor): AT-automatisierungstechnik, Methoden und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik, Fachzeitschrift im de Gryter Verlag.
• VDI-Richtlinie 4499: Digitale Fabrik; Digitaler Fabrikbetrieb, 2011.
• GMA Fachausschuss 6.11 „Virtuelle Inbetriebnahme“.
• Barth, Mike: Automatisch generierte Simulationsmodelle verfahrenstechnischer Anlagen für den Steuerungstest, Band 438 von Fortschritt-Berichte VDI Reihe 20, VDI-Verlag, 2011.
• Barth, Mike: Skript zur Vorlesung “Virtual Commissioning“. |
<p>| Letzte Änderung | 16.12.2013 |</p>
<table>
<thead>
<tr>
<th>Web-Technologien</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Berufsqualifizierendes akademisches Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>3 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>4./6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLK/PLM/PLP/(PLP+PLR)</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Technische Kenntnisse, die beispielsweise durch das Bachelor-Studium „Elektrotechnik/Informationstechnik“, „Technische Informatik“ oder „Mechatronik“ erworben werden (z.B. Kenntnisse einer Programmiersprache)</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>Prof. Dr. Richard Alznauer</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Seminaristischer Unterricht, Integration von Fallstudien / Beispielen, Übungen und Selbststudium.</td>
</tr>
<tr>
<td>Ziele</td>
<td>Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs: Die Studierenden entwickeln ein Verständnis für die technischen Grundlagen Web-basierter Systeme.</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• kennen die grundlegenden Eigenschaften wichtiger web-basierter Technologien,</td>
</tr>
<tr>
<td></td>
<td>• können Webdokumente syntaktisch korrekt mit HTML und CSS erstellen,</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, client- und serverseitige Technologien zu unterscheiden,</td>
</tr>
<tr>
<td></td>
<td>• beherrschen die Grundlagen der clientseitigen Programmiersprache JavaScript,</td>
</tr>
<tr>
<td></td>
<td>• beherrschen die Grundlagen der serverseitigen Programmiersprache PHP,</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, einfache Webanwendungen zu erstellen und</td>
</tr>
<tr>
<td></td>
<td>• können sich eigenständig in aktuelle, weiterführende Problemstellungen einarbeiten.</td>
</tr>
<tr>
<td>Inhalte</td>
<td>• HTML, XHTML,CSS</td>
</tr>
<tr>
<td></td>
<td>• DOM</td>
</tr>
<tr>
<td></td>
<td>• JavaScript</td>
</tr>
<tr>
<td></td>
<td>• PHP und MySQL</td>
</tr>
<tr>
<td></td>
<td>• XML, DTD, XSD</td>
</tr>
</tbody>
</table>
Web-Technologien

Verwendbarkeit des Moduls in anderen Studiengängen	Das Modul ist verwendbar im Studiengang:
	• Bachelor Elektrotechnik/Informationstechnik
	• Bachelor Technische Informatik

| Workload | Workload: 90 Stunden (3 Credits x 30 Stunden)
| | Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)
| | Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |

| Voraussetzung für die Vergabe von Credits | Bestandene Lehrveranstaltungsprüfung. |

| Stellenwert Modulnote für Endnote | Gewichtung 3 |

| Geplante Gruppengröße | ca. 15 Studierende |

| Literatur | • Skripte und Anleitungen des Moduls
| | Weiterführende Literatur
| | • Jennifer Niederst Robbins: HTML & XHTML – kurz und gut, O'Reilly; 4. Auflage
| | • David Flanagan, JavaScript: The Definitive Guide, O'Reilly Media; 6. Auflage
| | • Robin Nixon, Learning PHP, MySQL, JavaScript, and CSS: A Step-by-Step Guide to Creating Dynamic Websites, O'Reilly Media; 2. Auflage |

| Letzte Änderung | 06.01.2014 |
SIEBTES SEMESTER

ISS4030 – Fachübergreifende Qualifikation 2

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>ISS4030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Thomas Greiner</td>
</tr>
<tr>
<td>Level</td>
<td>Berufsqualifizierendes akademisches Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>4 Credits</td>
</tr>
</tbody>
</table>
| SWS | Planspiel/Vorlesung: 2 SWS
Kolloquium: 2 SWS |
| Studiensemester | 7. Semester |
| Häufigkeit | im Wintersemester |
| Dauer des Moduls | 1 Semester |
| Prüfungsart/en, Prüfungsdauer | UPL (Planspiel)
PVL-BP (Kolloquium) |
| Lehrsprache | deutsch/englisch |
| Teilnahmevoraussetzungen | Formale Voraussetzungen: Bestehen des 1. Studienabschnitts
Inhaltliche Voraussetzungen: Kenntnisse aus dem Modul Fachübergreifende Qualifikation 1 |
| zugehörige Lehrveranstaltungen | GMT9999 Betriebswirtschaftliches Planspiel
MEC4110 Mechatronik Kolloquium |
| Dozenten/Dozentinnen | N. N. (Betriebswirtschaftliches Planspiel) |
| Lehrformen der Lehrveranstaltungen des Moduls | Planspiel/Vorlesung
Kolloquium |

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden erwerben durch das Planspiel eine umfassende und praxisnahe Sichtweise auf ein Unternehmen.

Lernziele:
Die Studierenden
- können Folgen betriebswirtschaftlicher Entscheidungen auf die Unternehmensergebnisse abschätzen,
- kennen grundlegende Strategien zur Steigerung des Unternehmenswertes und wissen diese auf die Unterneh-
mensfunktionen zu übertragen,
• erwerben Fähigkeiten zur zielorientierten Führung eines Unternehmens (insb. betriebswirtschaftlicher Planungsprozesse), sowie zum Umgang mit Team – Konflikten und komplexen Entscheidungssituationen, die unter Zeitdruck und unsicheren Zukunftserwartungen bewältigt werden müssen,
• erwerben durch den Besuch von Fachvorträgen ausgesuchter Fach- und Führungskräfte weiterführendes anwendungsorientiertes Wissen,
• vertiefen die eigenen Fachkenntnisse durch die Leitung von Tutorien,
• vertiefen Präsentationstechniken und wenden diese an.

Inhalte

<table>
<thead>
<tr>
<th>Vorlesung Betriebswirtschaftliches Planspiel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Leitung eines virtuellen Unternehmens als Teil eines „Management-Teams“ über einen Zeitraum mehrerer Geschäftsjahre</td>
</tr>
<tr>
<td>• Analyse und Lösung betriebswirtschaftlicher Problemstellungen</td>
</tr>
<tr>
<td>• Durchführung betriebswirtschaftlicher Planungsprozesse</td>
</tr>
<tr>
<td>• Treffen komplexer betriebswirtschaftlicher Entscheidungen im Team unter Zeitdruck und Datenunsicherheit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kolloquium:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• abhängig vom individuellen Studierenden</td>
</tr>
<tr>
<td>• Besuch von Fachvorträgen</td>
</tr>
<tr>
<td>• Durchführung und Leitung von Tutorien</td>
</tr>
<tr>
<td>• Vertiefung methodischer Fragen, auch und vor allem im Hinblick auf die anstehende Bachelorthesis</td>
</tr>
</tbody>
</table>

Workload

| Workload: 120 Stunden (4 Credits x 30 Stunden) |
| Präsentstudium: 60 Stunden (4 SWS x 15 Wochen) |
| Eigenstudium: 60 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |

Voraussetzung für die Vergabe von Credits

| Erfolgreich absolviertes Planspiel und Kolloquium. |

Geplante Gruppengröße

| Planspiel/Vorlesung: ca. 70 Studierende |
| Kolloquium: einzelne Studierende bzw. Kleingruppen |

Letzte Änderung

| 01.03.2013 |
ISS4050 – Ingenieurmethoden 2

<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>ISS4050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. rer. nat. Esther Rösch</td>
</tr>
<tr>
<td>Level</td>
<td>Berufsqualifizierendes akademisches Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>8 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>Kolloquium: 2 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>7. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Wintersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PVL-BP (Kolloquium) UPL</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmeveraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. Studienabschnitts</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>COL4999 Fachwissenschaftliches Kolloquium</td>
</tr>
<tr>
<td></td>
<td>MEC4500 Wissenschaftliche Dokumentation</td>
</tr>
<tr>
<td></td>
<td>ISS4023 Seminarvortrag</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>alle Professoren des Studiengangs</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Kolloquium Vortrag</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:

Im Rahmen des fachwissenschaftlichen Kolloquiums sollen die Studierenden sich selbstständig unter wissenschaftlicher Anleitung in das ihrer Abschlussarbeit einarbeiten, das in Absprache mit dem betreuenden Professor festgelegt wird. Die Studierenden halten darüber im Rahmen des Seminarvortrags einen Fachvortrag.

Lernziele:

Die Studierenden

- Können komplexe und umfassende Aufgaben von besonderer Schwierigkeit selbstständig methodisch fehlerfrei lösen,
- erkennen ihre Schwächen und können diese abbauen und
- fördern ihre kritische Selbstreflexion.
ISS4050 – Ingenieurmethoden 2

| Inhalte | Kolloquium:
- individuell abhängig vom Studierenden
- insbesondere Gegenstände, bei denen der einzelnen Studierende selbst oder sein Mentor Defizite sieht oder besonderes Interesse zeigt
- methodische Fragen, auch und vor allem im Hinblick auf die anstehende Bachelorthesis, werden vertieft

Wissenschaftliche Dokumentation:
- Stilistik
- Formaler Aufbau von Dokumenten
- Grundbegriffe der Typographie und Printgestaltung
- Praktische Übungen am PC (Gliederung, Arbeiten mit Formatvorlagen, Inhaltsverzeichnis usw.). |
| --- | --- |
| Workload | Workload: 150 Stunden (5 Credits x 30 Stunden)
Präsenzstudium: 30 Stunden (2 SWS x 15 Wochen)
Eigenstudium: 120 Stunden (Vor- und Nachbereitung der Lehrveranstaltungen, Bearbeitung von Übungen etc. und zur Vorbereitung und Durchführung der Prüfung) |
| Voraussetzung für die Vergabe von Credits | Erfolgreiche Absolvierung der individuellen Vorgaben. |
| Geplante Gruppengröße | Seminarvortrag und Wissenschaftliche Dokumentation: bis ca. 70 Studierende
Kolloquium: einzelne Studierende bzw. Kleingruppen |
| Literatur | Wissenschaftliche Dokumentation:
- Rechenberg, Peter: Technisches Schreiben (nicht nur) für Informatiker. Hanser Verlag München, 3. Aufl. 2006
- Skripte und Anleitungen des Moduls |
<p>| Sonstiges | |
| Letzte Änderung | 01.03.2013 |</p>
<table>
<thead>
<tr>
<th>Kennziffer</th>
<th>MEC4100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Mike Barth</td>
</tr>
<tr>
<td>Level</td>
<td>Berufskвалиfizierendes akademisches Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>5 Credits</td>
</tr>
<tr>
<td>SWS</td>
<td>4 SWS</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Sommersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLP</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>zugehörige Lehrveranstaltungen</td>
<td>MEC4100 Projektarbeit 3</td>
</tr>
<tr>
<td>Dozenten</td>
<td>alle Professoren des Studiengangs</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Kolloquium</td>
</tr>
<tr>
<td>Ziele</td>
<td>Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs: Die Studierenden vertiefen im Rahmen der dritten Projektarbeit ihre praktischen Fähigkeiten, sich selbstständig in eine gegebene Aufgabenstellung einarbeiten und diese zielgerichtet durchzuführen. Sie stellen dazu Arbeitspläne auf, kommunizieren mit dem Betreuer und gegebenenfalls weiteren Teammitgliedern und vertiefen so ihre Kenntnisse im Projektmanagement. Durch die Wahl des Themas erwerben sie vertiefende Kenntnisse auf einem Gebiet der Mechatronik. Das ingenieurmäßige Herangehen an die Aufgabenstellung steht bei der Bearbeitung des Themas im Vordergrund und bereitet die Studierenden auf die spätere Vorgehensweise in der Industrie vor. Durch die Dokumentation und die Präsentation der Ergebnisse (Vortrag mit öffentlicher Diskussion) üben sie die Kommunikation mit einem Fachpublikum bzw. späteren Arbeitskollegen.</td>
</tr>
<tr>
<td>Workload</td>
<td>Eigenstudium: 150 Stunden (Einarbeitung, Durchführung, Dokumentation, Kolloquium) und Coaching</td>
</tr>
<tr>
<td>MEC4100 – Projektarbeit 3</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Voraussetzung für die Vergabe von Credits</td>
<td>Erfolgreiche Absolvierung der Projektarbeit.</td>
</tr>
<tr>
<td>Stellenwert Modulnote für Endnote</td>
<td>Gewichtung 5</td>
</tr>
<tr>
<td>Letzte Änderung</td>
<td>01.10.2013</td>
</tr>
<tr>
<td>Kennziffer</td>
<td>THE4998</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Mike Barth</td>
</tr>
<tr>
<td>Level</td>
<td>Berufsbibliothekierendes akademisches Niveau</td>
</tr>
<tr>
<td>Credits</td>
<td>12 Credits</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>7. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>im Wintersemester</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Prüfungsart/en, Prüfungsdauer</td>
<td>PLT</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Formale Voraussetzungen: Bestehen des 1. und 2. Studienabschnitts</td>
</tr>
<tr>
<td></td>
<td>Inhaltliche Voraussetzungen: Kenntnisse aus den Modulen aller Fachsemester.</td>
</tr>
<tr>
<td>Dozenten/Dozentinnen</td>
<td>alle Professoren des Studiengangs</td>
</tr>
<tr>
<td>Lehrformen der Lehrveranstaltungen des Moduls</td>
<td>Abschlussarbeit</td>
</tr>
</tbody>
</table>

Ziele

Qualifikationsziele/Beitrag zu den Qualifikationszielen des Studiengangs:
Die Studierenden zeigen, dass sie sich in eine komplexe Aufgabenstellung der Mechatronik einarbeiten und diese zielgerichtet mit ingenieurmäßigen Methoden bearbeiten können. Die Aufgabenstellung ergibt sich vorzugsweise aus Industriekooperationen und ist typischerweise im Bereich Entwicklung oder angewandte Forschung anzusiedeln. Die Studierenden wenden die gelernten Fähigkeiten an, sich einen Arbeitsplan aufzustellen, sich notwendige Informationen zu beschaffen und mit dem Betreuer und gegebenenfalls in einem Team zu kommunizieren. Die Studierenden dokumentieren und präsentieren ihre Ergebnisse im Rahmen eines hochschulöffentlichen Kolloquiums.

Workload

Eigenstudium (Einarbeitung, Durchführung, Dokumentation, Kolloquium) und Coaching: 450 Stunden

Voraussetzung für die Vergabe von Credits
Erfolgreiche Absolvierung der Abschlussarbeit sowie des Kolloquiums.

Stellenwert Modulnote für Endnote
Gewichtung 15

Geplante Gruppengröße
Kolloquium: Hochschulöffentlichkeit

Letzte Änderung
01.10.2013